1887

Abstract

The quorum-sensing (QS) systems control several virulence attributes of . Five QS-deficient clinical isolates (CI) that were obtained from wound (CI-1), tracheal (CI-2, CI-3, CI-4) and urinary tract (CI-5) infections had previously been characterized. In this study, a flow-through continuous-culture system was utilized to examine in detail the biofilms formed by these isolates in comparison with the prototrophic strain PAO1. Analysis of the biofilms by confocal laser scanning microscopy and COMSTAT image analysis at 1 and 7 days post-inoculation showed that the isolates produced diverse biofilms. In comparison with PAO1, the CI produced biofilms that scarcely or partially covered the surface at day 1, although CI-1 produced larger microcolonies. At day 7, CI-2 and CI-4 produced mature biofilms denser than that produced by PAO1, while the biofilm formed by CI-1 changed very little from day 1. CI-1 was defective in both swarming and twitching motilities, and immunoblotting analysis confirmed that it produced a reduced level of PilA protein. The twitching-motility defect of CI-1 was not complemented by a plasmid carrying intact . In the 48 h colony biofilm assay, the CI varied in susceptibility to imipenem, gentamicin and piperacillin/tazobactam. These results suggest that: (1) the isolates produced biofilms with different structures and densities from that of PAO1; (2) biofilm formation by the isolates was not influenced by either the isolation site or the QS deficiencies of the isolates; (3) the behaviour of CI-1 in the different biofilm systems may be due to its lack of swarming motility and type IV pilus-related twitching motility.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47031-0
2007-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/6/738.html?itemId=/content/journal/jmm/10.1099/jmm.0.47031-0&mimeType=html&fmt=ahah

References

  1. Anderl J. N., Zahller J., Roe F., Stewart P. S. 2003; Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 47:1251–1256 [CrossRef]
    [Google Scholar]
  2. Boles B. R., Thoendel M., Singh P. K. 2005; Rhamnolipids mediate detachment of Pseudmonas aeruginosa from biofilms. Mol Microbiol 57:1210–1223 [CrossRef]
    [Google Scholar]
  3. Borriello G., Werner E., Roe F., Kim A. M., Ehrlich G. D., Stewart P. S. 2004; Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 48:2659–2664 [CrossRef]
    [Google Scholar]
  4. Carty N. L., Rumbaugh K. P., Hamood A. N. 2003; Regulation of toxA by PtxR in Pseudomonas aeruginosa PA103. Can J Microbiol 49:450–464 [CrossRef]
    [Google Scholar]
  5. Carty N. L., Layland N., Colmer-Hamood J. A., Calfee M. W., Pesci E. C., Hamood A. N. 2006; PtxR modulates the expression of QS-controlled virulence factors in the Pseudomonas aeruginosa strain PAO1. Mol Microbiol 61:782–794 [CrossRef]
    [Google Scholar]
  6. Costerton J. W., Stewart P. S., Greenberg E. P. 1999; Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322 [CrossRef]
    [Google Scholar]
  7. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P. 1998; The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298 [CrossRef]
    [Google Scholar]
  8. De Kievit T. R., Gillis R. J., Marx S., Brown C., Iglewski B. H. 2001; Quorum sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol 67:1865–1873 [CrossRef]
    [Google Scholar]
  9. Deziel E., Comeau Y., Villemur R. 2001; Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol 183:1195–1204 [CrossRef]
    [Google Scholar]
  10. Donlan R. M., Costerton J. W. 2002; Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193 [CrossRef]
    [Google Scholar]
  11. Head N. E., Yu H. 2004; Cross-sectional analysis of clinical and environmental isolates of Pseudomonas aeruginosa : biofilm formation, virulence, and genome diversity. Infect Immun 72:133–144 [CrossRef]
    [Google Scholar]
  12. Hentzer M., Teitzel G. M., Balzer G. J., Heydorn A., Molin S., Givskov M., Parsek M. R. 2001; Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183:5395–5401 [CrossRef]
    [Google Scholar]
  13. Heydorn A., Nielsen A. T., Hentzer M., Sternberg C., Givskov M., Ersboll B. K., Molin S. 2000; Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146:2395–2407
    [Google Scholar]
  14. Heydorn A., Ersboll B., Kato J., Hentzer M., Parsek M. R., Tolker-Nielsen T., Givskov M., Molin S. 2002; Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol 68:2008–2017 [CrossRef]
    [Google Scholar]
  15. Holloway B. W., Krishnapillai V., Morgan A. F. 1979; Chromosomal genetics of Pseudomonas . Microbiol Rev 43:73–102
    [Google Scholar]
  16. Klausen M., Heydorn A., Ragas P., Lambertsen L., Aaes-Jorgensen A., Molin S., Tolker-Nielsen T. 2003; Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524 [CrossRef]
    [Google Scholar]
  17. Kohler T., Curty L. K., Barja F., van Delden C., Pechere J. C. 2000; Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996 [CrossRef]
    [Google Scholar]
  18. Kutter E., Sulakvelidze A. 2005 Bacteriophages: Biology and Applications Boca Raton, FL: CRC Press;
    [Google Scholar]
  19. Latifi A., Foglino M., Tanaka K., Williams P., Lazdunski A. 1996; A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146 [CrossRef]
    [Google Scholar]
  20. Lee B., Haagensen J. A., Ciofu O., Andersen J. B., Hoiby N., Molin S. 2005; Heterogeneity of biofilms formed by nonmucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. J Clin Microbiol 43:5247–5255 [CrossRef]
    [Google Scholar]
  21. Martin D. W., Holloway B. W., Deretic V. 1993; Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa : AlgU shows sequence similarities with a Bacillus sigma factor. J Bacteriol 175:1153–1164
    [Google Scholar]
  22. Matsukawa M., Greenberg E. P. 2004; Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J Bacteriol 186:4449–4456 [CrossRef]
    [Google Scholar]
  23. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Nicolle L. E. 2005; Catheter-related urinary tract infection. Drugs Aging 22:627–639 [CrossRef]
    [Google Scholar]
  25. O'Toole G. A., Kolter R. 1998a; Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304 [CrossRef]
    [Google Scholar]
  26. O'Toole G. A., Kolter R. 1998b; Initiation of biofilm formation in Pseudomonas fluorescen s WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461 [CrossRef]
    [Google Scholar]
  27. Pemberton J. M. 1973; F116: a DNA bacteriophage specific for the pili of Pseudomonas aeruginosa strain PAO. Virology 55:558–560 [CrossRef]
    [Google Scholar]
  28. Pollack M. 2000; Pseudomonas aeruginosa . In Mandell, Douglas and Bennett's Principles and Practice of Infectious Diseases . pp 2310–2327 Edited by Mandell G. L., Bennett J. E., Dolin R. Philadelphia, PA: Churchill Livingstone;
  29. Prince A. S. 2002; Biofilms, antimicrobial resistance, and airway infection. N Engl J Med 347:1110–1111 [CrossRef]
    [Google Scholar]
  30. Roy-Burman A., Savel R. H., Racine S., Swanson B. L., Revadigar N. S., Fujimoto J., Sawa T., Frank D. W., Wiener-Kronish J. P. 2001; Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis 183:1767–1774 [CrossRef]
    [Google Scholar]
  31. Rumbaugh K. P., Griswold J. A., Hamood A. N. 1999; Pseudomonas aeruginosa strains obtained from patients with tracheal, urinary tract and wound infection: variations in virulence factors and virulence genes. J Hosp Infect 43:211–218 [CrossRef]
    [Google Scholar]
  32. Rumbaugh K. P., Griswold J. A., Hamood A. N. 2000; The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa . Microbes Infect 2:1721–1731 [CrossRef]
    [Google Scholar]
  33. Sauer K., Camper A. K., Ehrlich G. D., Costerton J. W., Davies D. G. 2002; Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1145 [CrossRef]
    [Google Scholar]
  34. Schaber J. A., Carty N. L., McDonald N. A., Graham E. D., Cheluvappa R., Griswold J. A., Hamood A. N. 2004; Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa . J Med Microbiol 53:841–853 [CrossRef]
    [Google Scholar]
  35. Schweizer H. P. 1991; Escherichia Pseudomonas shuttle vectors derived from pUC18/19. Gene 97:109–121 [CrossRef]
    [Google Scholar]
  36. Seed P. C., Passador L., Iglewski B. H. 1995; Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J Bacteriol 177:654–659
    [Google Scholar]
  37. Shrout J. D., Chopp D. L., Just C. L., Hentzer M., Givskov M., Parsek M. R. 2006; The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa is nutritionally conditional. Mol Microbiol 62:1264–1277 [CrossRef]
    [Google Scholar]
  38. Smith A. W., Iglewski B. H. 1989; Transformation of Pseudomonas aeruginosa by electroporation. Nucleic Acids Res 17:10509 [CrossRef]
    [Google Scholar]
  39. Stewart P. S., Costerton J. W. 2001; Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138 [CrossRef]
    [Google Scholar]
  40. Stewart P. S., Peyton B. M., Drury W. J., Murga R. 1993; Quantitative observations of heterogeneities in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 59:327–329
    [Google Scholar]
  41. Stickler D. J. 2002; Susceptibility of antibiotic-resistant Gram-negative bacteria to biocides: a perspective from the study of catheter biofilms. J Appl Microbiol 92, (Suppl):163S–170S [CrossRef]
    [Google Scholar]
  42. van Delden C., Iglewski B. H. 1998; Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560 [CrossRef]
    [Google Scholar]
  43. Venturi V. 2006; Regulation of quorum sensing in Pseudomonas . FEMS Microbiol Rev 30:274–291 [CrossRef]
    [Google Scholar]
  44. Walters M. C. III, Roe F., Bugnicourt A., Franklin M. J., Stewart P. S. 2003; Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47:317–323 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47031-0
Loading
/content/journal/jmm/10.1099/jmm.0.47031-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error