1887

Abstract

In this study, the mechanisms leading to increased chromosomal AmpC -lactamase expression and the contributory roles of the outer-membrane protein OprF and penicillin-binding proteins were analysed in 33 characterized clinical isolates of . The genes and were analysed by PCR and DNA sequencing. Expression of the gene was assessed using real-time RT-PCR, and penicillin-binding proteins were analysed using a chemiluminescence assay. Several of the isolates with increased expression had major deletions affecting , although in some isolates the mechanism of increased expression could not be ascertained. Occasional isolates had increased expression of both and but remained susceptible to cephalosporins, suggesting that increased -lactamase activity could not offset increased outer-membrane permeability. There were no discernible changes in penicillin-binding proteins. Genomic deletions in were observed in selected clinical isolates of with increased expression of the AmpC -lactamase. For some isolates, cephalosporin resistance was dependent upon the interplay of and expression.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47019-0
2007-06-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/6/809.html?itemId=/content/journal/jmm/10.1099/jmm.0.47019-0&mimeType=html&fmt=ahah

References

  1. Bagge, N., Ciofu, O., Hentzer, M., Campbell, J. I. A., Givskov, M. & Høiby, N. ( 2002; ). Constitutive high expression of chromosomal β-lactamase in Pseudomonas aeruginosa caused by a new insertion sequence (IS1669) located in ampD. Antimicrob Agents Chemother 46, 3406–3411.[CrossRef]
    [Google Scholar]
  2. Bellido, F., Martin, N. L., Siehnel, R. J. & Hancock, R. E. ( 1992; ). Reevaluation, using intact cells, of the exclusion limit and role of porin OprF in Pseudomonas aeruginosa outer membrane permeability. J Bacteriol 174, 5196–5203.
    [Google Scholar]
  3. Brinkman, F. S. L., Schoofs, G., Hancock, R. E. W. & De Mot, R. ( 1999; ). Influence of a putative ECF sigma factor on expression of the major outer membrane protein, OprF, in Pseudomonas aeruginosa and Pseudomonas fluorescens. J Bacteriol 181, 4746–4754.
    [Google Scholar]
  4. Brinkman, F. S. L., Bains, M. & Hancock, R. E. W. ( 2000; ). The amino terminus of Pseudomonas aeruginosa outer membrane protein OprF forms channels in lipid bilayer membranes: correlation with a three-dimensional model. J Bacteriol 182, 5251–5259.[CrossRef]
    [Google Scholar]
  5. Campbell, J. I. A., Ciofu, O. & Hoiby, N. ( 1997; ). Pseudomonas aeruginosa isolates from patients with cystic fibrosis have different β-lactamase expression phenotypes but are homogeneous in the ampC–ampR genetic region. Antimicrob Agents Chemother 41, 1380–1384.
    [Google Scholar]
  6. Chamberland, S., Malouin, F., Rabin, H. R., Schollaardt, T., Parr, T. R., Jr & Bryan, L. E. ( 1990; ). Persistence of Pseudomonas aeruginosa during ciprofloxacin therapy of a cystic fibrosis patient: transient resistance to quinolones and protein F-deficiency. J Antimicrob Chemother 25, 995–1010.[CrossRef]
    [Google Scholar]
  7. Curtis, N. A. C., Orr, D., Ross, G. W. & Boulton, M. G. ( 1979; ). Competition of β-lactam antibiotics for the penicillin-binding proteins of Pseudomonas aeruginosa, Enterobacter cloacae, Klebsiella aerogenes, Proteus rettgeri, and Escherichia coli: comparison with antibacterial activity and effects upon bacterial morphology. Antimicrob Agents Chemother 16, 325–328.[CrossRef]
    [Google Scholar]
  8. Godfrey, A. J., Bryan, L. E. & Rabin, H. R. ( 1981; ). β-Lactam-resistant Pseudomonas aeruginosa with modified penicillin-binding proteins emerging during cystic fibrosis treatment. Antimicrob Agents Chemother 19, 705–711.[CrossRef]
    [Google Scholar]
  9. Gotoh, N., Wakebe, H., Yoshihara, E., Nakae, T. & Nishino, T. ( 1989; ). Role of protein F in maintaining structural integrity of the Pseudomonas aeruginosa outer membrane. J Bacteriol 171, 983–990.
    [Google Scholar]
  10. Hancock, R. E. W. & Woodruff, W. A. ( 1988; ). Roles of porin and β-lactamase in β-lactam resistance of Pseudomonas aeruginosa. Rev Infect Dis 10, 770–775.[CrossRef]
    [Google Scholar]
  11. Juan, C., Macia, M. D., Gutierrez, O., Vidal, C., Pérez, J. L. & Oliver, A. ( 2005; ). Molecular mechanisms of β-lactam resistance mediated by AmpC hyperproduction in Pseudomonas aeruginosa clinical strains. Antimicrob Agents Chemother 49, 4733–4738.[CrossRef]
    [Google Scholar]
  12. Juan, C., Moya, B., Perez, J. L. & Oliver, A. ( 2006; ). Stepwise upregulation of the Pseudomonas aeruginosa chromosomal cephalosporinase conferring high-level β-lactam resistance involves three AmpD homologues. Antimicrob Agents Chemother 50, 1780–1787.[CrossRef]
    [Google Scholar]
  13. Kong, K.-F., Jayawardena, S. R., Indulkar, S. D., del Puerto, A., Koh, C.-L., Høiby, N. & Mathee, K. ( 2005; ). Pseudomonas aeruginosa AmpR is a global transcriptional factor that regulates expression of AmpC and PoxB β-lactamases, proteases, quorum sensing, and other virulence factors. Antimicrob Agents Chemother 49, 4567–4575.[CrossRef]
    [Google Scholar]
  14. Langaee, T. Y., Gagnon, L. & Huletsky, A. ( 2000; ). Inactivation of the ampD gene in Pseudomonas aeruginosa leads to moderate-basal-level and hyperinducible AmpC β-lactamase expression. Antimicrob Agents Chemother 44, 583–589.[CrossRef]
    [Google Scholar]
  15. Nikaido, H., Nikaido, K. & Harayama, S. ( 1991; ). Identification and characterization of porins in Pseudomonas aeruginosa. J Biol Chem 266, 770–779.
    [Google Scholar]
  16. Noguchi, H., Matsuhashi, M. & Mitsuhashi, S. ( 1979; ). Comparative studies of penicillin-binding proteins in Pseudomonas aeruginosa and Escherichia coli. Eur J Biochem 100, 41–49.[CrossRef]
    [Google Scholar]
  17. Noguchi, H., Fukasawa, M., Komatsu, T., Mitsuhashi, S. & Matsuhashi, M. ( 1985; ). Mutation in Pseudomonas aeruginosa causing simultaneous defects in penicillin-binding protein 5 and in enzyme activities of penicillin release and d-alanine carboxypeptidase. J Bacteriol 162, 849–851.
    [Google Scholar]
  18. Piddock, L. J. V., Hall, M. C., Bellido, F., Bains, M. & Hancock, R. E. ( 1992; ). A pleiotropic, posttherapy, enoxacin-resistant mutant of Pseudomonas aeruginosa. Antimicrob Agents Chemother 36, 1057–1061.[CrossRef]
    [Google Scholar]
  19. Pucci, M. J., Boice-Sowek, J., Kessler, R. E. & Dougherty, T. J. ( 1991; ). Comparison of cefepime, cefpirome, and cefaclidine binding affinities for penicillin-binding proteins in Escherichia coli K-12 and Pseudomonas aeruginosa SC8329. Antimicrob Agents Chemother 35, 2312–2317.[CrossRef]
    [Google Scholar]
  20. Quale, J., Bratu, S., Landman, D. & Heddurshetti, R. ( 2003; ). Molecular epidemiology and mechanisms of carbapenem resistance in Acinetobacter baumannii endemic in New York City. Clin Infect Dis 37, 214–220.[CrossRef]
    [Google Scholar]
  21. Quale, J., Bratu, S., Gupta, J. & Landman, D. ( 2006; ). Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 50, 1633–1641.[CrossRef]
    [Google Scholar]
  22. Quinn, J. P., Dudek, E. J., DiVincenzo, C. A., Lucks, D. A. & Lerner, S. A. ( 1986; ). Emergence of resistance to imipenem during therapy for Pseudomonas aeruginosa infections. J Infect Dis 154, 289–294.[CrossRef]
    [Google Scholar]
  23. Rawling, E. G., Brinkman, F. S. L. & Hancock, R. E. W. ( 1998; ). Roles of the carboxy-terminal half of Pseudomonas aeruginosa major outer membrane protein OprF in cell shape, growth in low-osmolarity medium, and peptidoglycan association. J Bacteriol 180, 3556–3562.
    [Google Scholar]
  24. Woodruff, W. A. & Hancock, R. E. W. ( 1988; ). Construction and characterization of Pseudomonas aeruginosa protein F-deficient mutants after in vitro and in vivo insertion mutagenesis of the cloned gene. J Bacteriol 170, 2592–2598.
    [Google Scholar]
  25. Woodruff, W. A. & Hancock, R. E. W. ( 1989; ). Pseudomonas aeruginosa outer membrane protein F: structural role and relationship to the Escherichia coli OmpA protein. J Bacteriol 171, 3304–3309.
    [Google Scholar]
  26. Yoshihara, E. & Nakae, T. ( 1989; ). Identification of porins in the outer membrane of Pseudomonas aeruginosa that form small diffusion pores. J Biol Chem 264, 6297–6301.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47019-0
Loading
/content/journal/jmm/10.1099/jmm.0.47019-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error