1887

Abstract

Mycobacterial interspersed repetitive unit (MIRU) typing has been found to allow rapid, reliable, high-throughput genotyping of , and may represent a feasible approach to study molecular epidemiology. To evaluate the use of MIRU typing in discriminating strains, isolates from 105 patients in Wuhan City, China, were genotyped by this method as compared to spoligotyping. MIRU typing identified 55 types that defined 21 clusters and 34 unique isolates. The discriminatory power was high [Hunter–Gaston discriminatory index (HGDI), 0.97]. Spoligotyping showed that 86 (81.9 %) of 105 isolates belonged to the Beijing family genotype. For Beijing family and non-Beijing strains, the discriminatory power of MIRU was high (HGDI, 0.95 and 0.98, respectively). Among the alleles of the MIRU loci for the Beijing family, only locus 26 was highly discriminative, but for non-Beijing strains, loci 10, 16 and 26 were highly discriminative. MIRU typing is a simple and fast method which may be used for preliminary screening of isolates in China.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47005-0
2007-09-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/9/1219.html?itemId=/content/journal/jmm/10.1099/jmm.0.47005-0&mimeType=html&fmt=ahah

References

  1. Barlow, R. E., Gascoyne-Binzi, D. M., Gillespie, S. H., Dickens, A., Qamer, S. & Hawkey, P. M. ( 2001; ). Comparison of variable number tandem repeats and IS6110–restriction fragment length polymorphism analyses for discrimination of high- and low-copy-number IS6110 Mycobacterium tuberculosis isolates. J Clin Microbiol 39, 2453–2457.[CrossRef]
    [Google Scholar]
  2. Bifani, P. J., Mathema, B., Kurepina, N. E. & Kreiswirth, B. N. ( 2002; ). Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends Microbiol 10, 45–52.[CrossRef]
    [Google Scholar]
  3. Cowan, L. S., Mosher, L., Diem, L., Massey, J. P. & Crawford, J. T. ( 2002; ). Variable-number tandem repeat typing of Mycobacterium tuberculosis isolates with low copy numbers of IS6110 by using mycobacterial interspersed repetitive units. J Clin Microbiol 40, 1592–1602.[CrossRef]
    [Google Scholar]
  4. Dale, J. W., Brittain, D., Cataldi, A. A., Cousins, D., Crawford, J. T., Driscoll, J., Heersma, H., Lillebaek, T., Quitugua, T. & other authors ( 2001; ). Spacer oligonucleotide typing of bacteria of the Mycobacterium tuberculosis complex: recommendations for standardised nomenclature. Int J Tuberc Lung Dis 5, 216–219.
    [Google Scholar]
  5. Glynn, J. R., Whiteley, J., Bifani, P. J., Kremer, K. & van Soolingen, D. ( 2002; ). Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg Infect Dis 8, 843–849.[CrossRef]
    [Google Scholar]
  6. Graur, D. & Li, W.-H. (editors) ( 2000; ). Dynamics of genes in populations. In Fundamentals of Molecular Evolution, p. 58. Sunderland, MA: Sinauer Associates.
  7. Hunter, P. R. & Gaston, M. A. ( 1988; ). Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol 26, 2465–2466.
    [Google Scholar]
  8. Kam, K. M., Yip, C. W., Tse, L. W., Wong, K. L., Lam, T. K., Kremer, K., Au, B. K. & van Soolingen, D. ( 2005; ). Utility of mycobacterial interspersed repetitive unit typing for differentiating multidrug-resistant Mycobacterium tuberculosis isolates of the Beijing family. J Clin Microbiol 43, 306–313.[CrossRef]
    [Google Scholar]
  9. Kamerbeek, J., Schouls, L., Kolk, A., van Agterveld, M., van Soolingen, D., Kuijper, S., Bunschoten, A., Molhuizen, H., Shaw, R. & other authors ( 1997; ). Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35, 907–914.
    [Google Scholar]
  10. Kanduma, E., McHugh, T. D. & Gillespie, S. H. ( 2003; ). Molecular methods for Mycobacterium tuberculosis strain typing: a users guide. J Appl Microbiol 94, 781–791.[CrossRef]
    [Google Scholar]
  11. Kremer, K., van Soolingen, D., Frothingham, R., Haas, W. H., Hermans, P. W., Martin, C., Palittapongarnpim, P., Plikaytis, B. B., Riley, L. W. & other authors ( 1999; ). Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: interlaboratory study of discriminatory power and reproducibility. J Clin Microbiol 37, 2607–2618.
    [Google Scholar]
  12. Kremer, K., Glynn, J. R., Lillebaek, T., Niemann, S., Kurepina, N. E., Kreiswirth, B. N., Bifani, P. J. & van Soolingen, D. ( 2004; ). Definition of the Beijing/W lineage of Mycobacterium tuberculosis on the basis of genetic markers. J Clin Microbiol 42, 4040–4049.[CrossRef]
    [Google Scholar]
  13. Kremer, K., Arnold, C., Cataldi, A., Gutierrez, M. C., Haas, W. H., Panaiotov, S., Skuce, R. A., Supply, P., van der Zanden, A. G. & van Soolingen, D. ( 2005; ). Discriminatory power and reproducibility of novel DNA typing methods for Mycobacterium tuberculosis complex strains. J Clin Microbiol 43, 5628–5638.[CrossRef]
    [Google Scholar]
  14. Kwara, A., Schiro, R., Cowan, L., Hyslop, N. E., Wiser, M. F., Roahen Harrison, S., Kissinger, P., Diem, L. & Crawford, J. T. ( 2003; ). Evaluation of the epidemiologic utility of secondary typing methods for differentiation of Mycobacterium tuberculosis isolates. J Clin Microbiol 41, 2683–2685.[CrossRef]
    [Google Scholar]
  15. Mazars, E., Lesjean, S., Banuls, A. L., Gilbert, M., Vincent, V., Gicquel, B., Tibayrenc, M., Locht, C. & Supply, P. ( 2001; ). High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc Natl Acad Sci U S A 98, 1901–1906.[CrossRef]
    [Google Scholar]
  16. Mokrousov, I., Otten, T., Vyazovaya, A., Limeschenko, E., Filipenko, M. L., Sola, C., Rastogi, N., Steklova, L., Vyshnevskiy, B. & Narvskaya, O. ( 2003; ). PCR-based methodology for detecting multidrug-resistant strains of Mycobacterium tuberculosis Beijing family circulating in Russia. Eur J Clin Microbiol Infect Dis 22, 342–348.[CrossRef]
    [Google Scholar]
  17. Mokrousov, I., Narvskaya, O., Limeschenko, E., Vyazovaya, A., Otten, T. & Vyshnevskiy, B. ( 2004; ). Analysis of the allelic diversity of the mycobacterial interspersed repetitive units in Mycobacterium tuberculosis strains of the Beijing family. Practical implications and evolutionary considerations. J Clin Microbiol 42, 2438–2444.[CrossRef]
    [Google Scholar]
  18. Nikolayevskyy, V., Gopaul, K., Brown, T., Fedorin, I. & Drobniewski, F. ( 2006; ). Differentiation of tuberculosis strains in a population with mainly Beijing-family strains. Emerg Infect Dis 12, 1406–1413.[CrossRef]
    [Google Scholar]
  19. Sola, C., Filliol, I., Legrand, E., Lesjean, S., Locht, C., Supply, P. & Rastogi, N. ( 2003; ). Genotyping of the Mycobacterium tuberculosis complex using MIRUs: association with VNTR and spoligotyping for molecular epidemiology and evolutionary genetics. Infect Genet Evol 3, 125–133.[CrossRef]
    [Google Scholar]
  20. Sun, Y. J., Bellamy, R., Lee, A. G., Ng, S. T., Ravindran, S., Wong, S. Y., Locht, C., Supply, P. & Paton, N. I. ( 2004; ). Use of mycobacterial interspersed repetitive unit–variable-number tandem repeat typing to examine genetic diversity of Mycobacterium tuberculosis in Singapore. J Clin Microbiol 42, 1986–1993.[CrossRef]
    [Google Scholar]
  21. Supply, P., Mazars, E., Lesjean, S., Vincent, V., Gicquel, B. & Locht, C. ( 2000; ). Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol Microbiol 36, 762–771.
    [Google Scholar]
  22. Supply, P., Lesjean, S., Savine, E., Kremer, K., van Soolingen, D. & Locht, C. ( 2001; ). Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J Clin Microbiol 39, 3563–3571.[CrossRef]
    [Google Scholar]
  23. Supply, P., Warren, R. M., Banuls, A. L., Lesjean, S., van der Spuy, G. D., Lewis, L. A., Tibayrenc, M., van Helden, P. D. & Locht, C. ( 2003; ). Linkage disequilibrium between minisatellite loci supports clonal evolution of Mycobacterium tuberculosis in a high tuberculosis incidence area. Mol Microbiol 47, 529–538.[CrossRef]
    [Google Scholar]
  24. van Embden, J. D. A., Cave, M. D., Crawford, J. T., Dale, J. W., Eisenach, K. D., Gicquel, B., Hermans, P., Martin, C., McAdam, R. & other authors ( 1993; ). Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 31, 406–409.
    [Google Scholar]
  25. van Soolingen, D., Qian, L., de Haas, P. E., Douglas, J. T., Traore, H., Portaels, F., Qing, H. Z., Enkhsaikan, D., Nymadawa, P. & van Embden, J. D. ( 1995; ). Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J Clin Microbiol 33, 3234–3238.
    [Google Scholar]
  26. Warren, R., Richardson, M., Sampson, S., Hauman, J. H., Beyers, N., Donald, P. R. & van Helden, P. D. ( 1996; ). Genotyping of Mycobacterium tuberculosis with additional markers enhances accuracy in epidemiological studies. J Clin Microbiol 34, 2219–2224.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47005-0
Loading
/content/journal/jmm/10.1099/jmm.0.47005-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error