1887

Abstract

A total of 203 clinical isolates of was collected during 2001–2006 from five university hospitals in Sofia, Bulgaria, to assess the current levels of antimicrobial susceptibility and to evaluate resistance mechanisms to antipseudomonal antimicrobial agents. The antibiotic resistance rates against the following antimicrobials were: carbenicillin 93.1 %, azlocillin 91.6 %, piperacillin 86.2 %, piperacillin/tazobactam 56.8 %, ceftazidime 45.8 %, cefepime 48.9 %, cefpirome 58.2 %, aztreonam 49.8 %, imipenem 42.3 %, meropenem 45.5 %, amikacin 59.1 %, gentamicin 79.7 %, tobramycin 89.6 %, netilmicin 69.6 % and ciprofloxacin 80.3 %. A total of 101 of the studied isolates (49.8 %) were multidrug resistant. Structural genes encoding class A and class D -lactamases showed the following frequencies: 33.1 %, 22.5 %, 0 %, 41.3 % and 8.8 %. IMP- and VIM-type carbapenemases were not detected. In conclusion, the studied clinical strains of were problematic nosocomial pathogens. VEB-1 extended-spectrum -lactamases appear to have a significant presence among clinical isolates from Sofia. Carbapenem resistance was related to non-enzymic mechanisms such as a deficiency of OprD proteins and active efflux.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46986-0
2007-07-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/7/956.html?itemId=/content/journal/jmm/10.1099/jmm.0.46986-0&mimeType=html&fmt=ahah

References

  1. Aminoglycoside Resistance Study Groups ( 1994; ). Resistance to aminoglycosides in Pseudomonas.. Trends Microbiol 2, 347–353.[CrossRef]
    [Google Scholar]
  2. Bachvarova, A., Velinov, T., Petrov, M., Kantardjiev, T., Levterova, V. & Ivanov, I. ( 2005; ). Widespread detection of VEB-1-type extended-spectrum β-lactamases among nosocomial Pseudomonas aeruginosa isolates in Bulgaria: a nationwide multicentre study. Clin Microbiol Infect 11, (Suppl. 2), 233
    [Google Scholar]
  3. Bahar, G., Mazzariol, A., Koncan, R., Mert, A., Fontana, R., Rossolini, G. M. & Cornaglia, G. ( 2004; ). Detection of VIM-5 metallo-β-lactamase in a Pseudomonas aeruginosa clinical isolate from Turkey. J Antimicrob Chemother 54, 282–283.[CrossRef]
    [Google Scholar]
  4. Bert, F., Branger, C. & Lambert-Zechovsky, N. ( 2002; ). Identification of PSE and OXA β-lactamase genes in Pseudomonas aeruginosa using PCR-restriction fragment length polymorphism. J Antimicrob Chemother 50, 11–18.[CrossRef]
    [Google Scholar]
  5. Bert, F., Ould-Hocine, Z., Juvin, M., Dubois, V., Loncle-Provot, V., Lefranc, V., Quentin, C., Lambert, N. & Arlet, G. ( 2003; ). Evaluation of the Osiris expert system for identification of β-lactam phenotypes in isolates of Pseudomonas aeruginosa. J Clin Microbiol 41, 3712–3718.[CrossRef]
    [Google Scholar]
  6. Blanc, D. S., Petignat, C., Janin, B., Bille, J. & Francioli, P. ( 1998; ). Frequency and molecular diversity of Pseudomonas aeruginosa upon admission and during hospitalization: a prospective epidemiologic study. Clin Microbiol Infect 4, 242–247.[CrossRef]
    [Google Scholar]
  7. Bush, K., Jacoby, G. A. & Medeiros, A. A. ( 1995; ). A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39, 1211–1233.[CrossRef]
    [Google Scholar]
  8. Claeys, G., Verschraegen, G., de Baere, T. & Vaneechoutte, M. ( 2000; ). PER-1 β-lactamase-producing Pseudomonas aeruginosa in an intensive care unit. J Antimicrob Chemother 45, 924–925.[CrossRef]
    [Google Scholar]
  9. De Champs, C., Poirel, L., Bonnet, R., Sirot, D., Chanal, C., Sirot, J. & Nordmann, P. ( 2002; ). Prospective survey of β-lactamases produced by ceftazidime-resistant Pseudomonas aeruginosa isolated in a French hospital in 2000. Antimicrob Agents Chemother 46, 3031–3034.[CrossRef]
    [Google Scholar]
  10. Empel, J., Filczak, K., Mrowka, A., Hryniewicz, W. & Gniadkowski, M. ( 2005; ). The first incidence of PER-1 ESBL-producing Pseudomonas aeruginosa in Poland and identification of a novel OXA β-lactamase variant. Clin Microbiol Infect 11, (Suppl. 2), 235 [CrossRef]
    [Google Scholar]
  11. Girlich, D., Naas, T., Leelaporn, A., Poirel, L., Fennewald, M. & Nordmann, P. ( 2002; ). Nosocomial spread of the integron-located veb-1-like cassette encoding an extended-spectrum β-lactamase in Pseudomonas aeruginosa in Thailand. Clin Infect Dis 34, 603–611.[CrossRef]
    [Google Scholar]
  12. Hooper, D. C. ( 2001; ). Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis 7, 337–341.[CrossRef]
    [Google Scholar]
  13. Jarlier, V., Nicolas, M. H., Fournier, G. & Philippon, A. ( 1988; ). Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis 10, 867–878.[CrossRef]
    [Google Scholar]
  14. Lee, K., Chong, Y., Shin, H. B., Kim, Y. A., Yong, D. & Yum, J. H. ( 2001; ). Modified Hodge and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect 7, 88–91.[CrossRef]
    [Google Scholar]
  15. Lee, S., Park, Y. J., Kim, M., Lee, H. K., Han, K., Kang, C. S. & Kang, M. W. ( 2005; ). Prevalence of Ambler class A and D β-lactamases among clinical isolates of Pseudomonas aeruginosa in Korea. J Antimicrob Chemother 56, 122–127.[CrossRef]
    [Google Scholar]
  16. Livermore, D. M. ( 1992; ). Interplay of impermeability and chromosomal β-lactamase activity in imipenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 36, 2046–2048.[CrossRef]
    [Google Scholar]
  17. Livermore, D. M. ( 2001; ). Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother 47, 247–250.[CrossRef]
    [Google Scholar]
  18. Llanes, C., Hocquet, D., Vogne, C., Benali-Baitich, D., Neuwirth, C. & Plesiat, P. ( 2004; ). Clinical strains of Pseudomonas aeruginosa overproducing MexA-MexB-OprM and MexXY efflux pumps simultaneously. Antimicrob Agents Chemother 48, 1797–1802.[CrossRef]
    [Google Scholar]
  19. Luzzaro, F., Mantengoli, E., Perilli, M., Lombardi, G., Orlandi, V., Orsatti, A., Amicosante, G., Rossolini, G. M. & Toniolo, A. ( 2001; ). Dynamics of a nosocomial outbreak of multidrug-resistant Pseudomonas aeruginosa producing the PER-1 extended-spectrum β-lactamase. J Clin Microbiol 39, 1865–1870.[CrossRef]
    [Google Scholar]
  20. Mavroidi, A., Tsakris, A., Tzelepi, E., Pournaras, S., Loukova, V. & Tzouvelekis, L. S. ( 2000; ). Carbapenem-hydrolyzing VIM-2 metallo-β-lactamase in Pseudomonas aeruginosa from Greece. J Antimicrob Chemother 46, 1041–1042.[CrossRef]
    [Google Scholar]
  21. McGowan, J. E. ( 2006; ). Resistance in nonfermenting Gram-negative bacteria: multidrug resistance to the maximum. Am J Med 119, S29–S36.
    [Google Scholar]
  22. Naas, T., Poirel, L., Karim, A. & Nordmann, P. ( 1999; ). Molecular characterization of In50, a class 1 integron encoding the gene for the extended-spectrum β-lactamase VEB-1 in Pseudomonas aeruginosa. FEMS Microbiol Lett 176, 411–419.
    [Google Scholar]
  23. Naas, T., Benaoudia, F., Massuard, S. & Nordmann, P. ( 2000; ). Integron-located VEB-1 extended-spectrum β-lactamase gene in a Proteus mirabilis clinical isolate from Vietnam. J Antimicrob Chemother 46, 703–711.[CrossRef]
    [Google Scholar]
  24. NCCLS ( 2004; ). Performance Standards for Antimicrobial Susceptibility Testing, 14th informational supplement, M100-S14. Wayne, PA: National Committee for Clinical Laboratory Standards.
  25. Nordmann, P. ( 2002; ). Old and novel mechanisms of resistance to β-lactams in P. aeruginosa. In 7th ECC Symposium Anything new for P. aeruginosa?, 4–7 May 2002, Paris.
  26. Nordmann, P. & Poirel, L. ( 2002; ). Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect 8, 321–331.[CrossRef]
    [Google Scholar]
  27. Petrov, M., Hadjieva, N., Kantardjiev, T., Velinov, T. & Bachvarova, A. ( 2005; ). Surveillance of antimicrobial resistance in Bulgaria – a synopsis from BulSTAR 2003. Euro Surveill 10, 79–82.
    [Google Scholar]
  28. Poirel, L., Naas, T., Guibert, M., Chaibi, E. B., Labia, R. & Nordmann, P. ( 1999; ). Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum β-lactamase encoded by an Escherichia coli integron gene. Antimicrob Agents Chemother 43, 573–581.
    [Google Scholar]
  29. Poirel, L., Rotimi, V., Mokaddas, E., Karim, A. & Nordmann, P. ( 2001; ). VEB-1-like extended-spectrum β-lactamases in Pseudomonas aeruginosa, Kuwait. Emerg Infect Dis 7, 468–470.[CrossRef]
    [Google Scholar]
  30. Poole, K. ( 2005; ). Aminoglycoside resistance in Pseudomonas aerginosa. Antimicrob Agents Chemother 49, 479–487.[CrossRef]
    [Google Scholar]
  31. Poole, K., Gotoh, N., Tsujimoto, H., Zhao, Q., Wada, A., Yamasaki, T., Neshat, S., Yamagishi, J., Li, X. Z. & Nishino, T. ( 1996; ). Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug resistant strains of Pseudomonas aeruginosa. Mol Microbiol 21, 713–724.[CrossRef]
    [Google Scholar]
  32. Pournaras, S., Tsakris, A., Maniati, M., Tzouvelekis, L. S. & Maniatis, A. N. ( 2002; ). Novel variant (bla VIM-4) of the metallo-β-lactamase gene bla VIM-1 in a clinical strain of Pseudomonas aeruginosa. Antimicrob Agents Chemother 46, 4026–4028.[CrossRef]
    [Google Scholar]
  33. Sanders, C. C. & Sanders, W. E. ( 1992; ). β-Lactam resistance in Gram-negative bacteria: global trends and clinical impact. Clin Infect Dis 15, 824–839.[CrossRef]
    [Google Scholar]
  34. Sanschagrin, F., Couture, F. & Levesque, R. C. ( 1995; ). Primary structure of OXA-3 and phylogeny of oxacillin-hydrolyzing class D β-lactamases. Antimicrob Agents Chemother 39, 887–893.[CrossRef]
    [Google Scholar]
  35. Tassios, P. T., Gennimata, V., Spaliara-Kalogeropoulou, L., Kairis, D., Koutsia, C., Vatopoulos, A. C. & Legakis, N. J. ( 1997; ). Multiresistant Pseudomonas aeruginosa serogroup O : 11 outbreak in an intensive care unit. Clin Microbiol Infect 3, 621–628.[CrossRef]
    [Google Scholar]
  36. Tsakris, A., Pournaras, S., Woodford, N., Palepou, M. F., Babini, G. S., Douboyas, J. & Livermore, D. M. ( 2000; ). Outbreak of infections caused by Pseudomonas aeruginosa producing VIM-1 carbapenemase in Greece. J Clin Microbiol 38, 1290–1292.
    [Google Scholar]
  37. Vahaboglu, H., Ozturk, R., Aygun, G., Coskunkan, F., Yaman, A., Kaygusuz, A., Leblebicioglu, H., Balik, I., Aydin, K. & Otkun, M. ( 1997; ). Widespread detection of PER-1-type extended-spectrum β-lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multicenter study. Antimicrob Agents Chemother 41, 2265–2269.
    [Google Scholar]
  38. Weldhagen, G. F., Poirel, L. & Nordmann, P. ( 2003; ). Ambler class A extended-spectrum β-lactamases in Pseudomonas aeruginosa: novel developments and clinical impacts. Antimicrob Agents Chemother 47, 2385–2392.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46986-0
Loading
/content/journal/jmm/10.1099/jmm.0.46986-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error