1887

Abstract

A cytosolic protein was purified from BL21 that demonstrated potent antifungal activity against pathogenic strains of ,, and . The MIC of purified protein from BL21 (PPEBL21) against species and was 1.95–3.98 and 15.62 μg ml, respectively. toxicity tests demonstrated no cytotoxicity of PPEBL21 to human erythrocytes up to the tested concentrations of 1250 μg ml. Amphotericin B was lethal to 100 % of human erythrocytes at a concentration of 37.5 μg ml. The N-terminal amino acid sequence of PPEBL21 was found to be DLAEVASR, which showed 75 % sequence similarity with alcohol dehydrogenase of yeast. Mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry also substantiated these observations. The results suggested that BL21 might be an important bioresource of lead molecules for developing new peptide-based therapies for treating fungal infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46973-0
2007-05-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/5/637.html?itemId=/content/journal/jmm/10.1099/jmm.0.46973-0&mimeType=html&fmt=ahah

References

  1. Antoine, E., Rolland, J.-H., Raffin, J.-P. & Dietrich, J. ( 1999; ). Cloning and over-expression in Escherichia coli of the gene encoding NADPH group III alcohol dehydrogenase from Thermococcus hydrothermalis. Eur J Biochem 264, 880–889.[CrossRef]
    [Google Scholar]
  2. Blum, H., Beier, H. & Gross, H. J. ( 1987; ). Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 93–99.[CrossRef]
    [Google Scholar]
  3. Cammue, B. P. A., De Bolle, M. F. C., Terras, F. R. G., Proost, P., Damme, J. V., Rees, S. B., Vanderleyden, J. & Broaekaert, W. F. ( 1992; ). Isolation and characterization of a novel class of plant antimicrobial peptide from Mirabilis jalapa L. seeds. J Biol Chem 267, 2228–2233.
    [Google Scholar]
  4. Chen, K. Y., Ko, S. C., Hsueh, P. R., Luh, K. T. & Yang, P. C. ( 2001; ). Pulmonary fungal infection: emphasis on microbiological spectra, patient outcome, and prognostic factors. Chest 120, 177–184.[CrossRef]
    [Google Scholar]
  5. Dabur, R., Ali, M., Singh, H., Gupta, J. & Sharma, G. L. ( 2004; ). A novel antifungal pyrrole derivative from Datura metel leaves. Pharmazie 59, 568–570.
    [Google Scholar]
  6. Dabur, R., Chhillar, A. K., Yadav, V., Kamal, P. K., Gupta, J. & Sharma, G. L. ( 2005; ). In vitro antifungal activity of 2-(3,4-dimethyl-2,5-dihydro-1H-pyrrol-2-yl)-1-methylethyl pentanoate, a dihydropyrrole derivative. J Med Microbiol 54, 549–552.[CrossRef]
    [Google Scholar]
  7. Dahot, U. A. ( 1998; ). Antimicrobial activity of small protein of Moringa oleifera leaves. J Islamic Acad Sci 11, 1–5.
    [Google Scholar]
  8. Dahot, M. U. ( 1999; ). Antibacterial and antifungal activity of small protein of Indigofera oblongifolia leaves. J Ethnopharmacol 64, 277–282.[CrossRef]
    [Google Scholar]
  9. Demain, A. L. ( 1999; ). Pharmaceutically active secondary metabolites of microorganisms. Appl Microbiol Biotechnol 52, 455–463.[CrossRef]
    [Google Scholar]
  10. Galgoczy, L., Papp, T., Leiter, E., Marx, F., Pocsi, I. & Vagvolgyi, C. ( 2005; ). Sensitivity of different zygomycetes to the Penicillium chrysogenum antifungal protein (PAF). J Basic Microbiol 45, 136–141.[CrossRef]
    [Google Scholar]
  11. Gao, W. D., Cao, H. T., Ji, R. H. & Zhang, Z. C. ( 1994; ). Isolation and characterization of protein-biosynthesis inhibiting proteins from seeds of luffa cylindrica. Acta Biochim Biophys 26, 289–295.
    [Google Scholar]
  12. Gupta, A. K. & Tomas, E. ( 2003; ). New antifungal agents. Dermatol Clin 21, 565–576.[CrossRef]
    [Google Scholar]
  13. Herbrecht, R. ( 2004; ). Voriconazole: therapeutic review of a new azole antifungal. Expert Rev Anti Infect Ther 2, 485–497.[CrossRef]
    [Google Scholar]
  14. Hong, S. Y., Oh, J. E., Kwon, M. Y., Choi, M. J., Lee, J. H., Lee, B. L., Moon, H. M. & Lee, K. H. ( 1998; ). Identification and characterization of novel antimicrobial decapeptides generated by combinatorial chemistry. Antimicrob Agents Chemother 42, 2534–2541.
    [Google Scholar]
  15. Iijima, R., Kurata, S. & Natori, S. ( 1993; ). Purification, characterization, and cDNA cloning of an antifungal protein from hemolymph of Sarcophaga peregrina (flesh fly) larvae. J Biol Chem 268, 12055–12061.
    [Google Scholar]
  16. Johnson, M. D., MacDougall, C., Ostrosky-Zeichner, L., Perfect, J. R. & Rex, J. H. ( 2004; ). Combination antifungal therapy. Antimicrob Agents Chemother 48, 693–715.[CrossRef]
    [Google Scholar]
  17. Laemmli, U. K. & Favre, M. ( 1973; ). Maturation of the head of bacteriophage T4. DNA packaging events. J Mol Biol 80, 575–599.[CrossRef]
    [Google Scholar]
  18. Latoud, C., Peypoux, F., Michel, G., Genet, R. & Morgat, J. ( 1986; ). Interactions of antibiotics of the iturin group with human erythrocytes. Biochim Biophys Acta 856, 526–535.[CrossRef]
    [Google Scholar]
  19. Lavermicocca, P., Valerio, F., Evidente, A., Lazzaroni, S., Corsetti, A. & Gobbetti, M. ( 2000; ). Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl Environ Microbiol 66, 4084–4090.[CrossRef]
    [Google Scholar]
  20. Lehrer, R. I., Lichtenstein, A. K. & Ganz, T. ( 1993; ). Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol 11, 105–128.[CrossRef]
    [Google Scholar]
  21. Leiter, E., Szappanos, H., Oberparleiter, C., Kaiserer, L., Csernoch, L., Pusztahelyi, T., Emri, T., Pocsi, I., Salvenmoser, W. & Marx, F. ( 2005; ). Antifungal protein PAF severely affects the integrity of the plasma membrane of Aspergillus nidulans and induces an apoptosis-like phenotype. Antimicrob Agents Chemother 49, 2445–2453.[CrossRef]
    [Google Scholar]
  22. Lodinová-Zádníková, R., Cukrowska, B. & Tlaskalova-Hogenova, H. ( 2003; ). Oral administration of probiotic Escherichia coli after birth reduces frequency of allergies and repeated infections later in life (after 10 and 20 years). Int Arch Allergy Immunol 131, 209–211.[CrossRef]
    [Google Scholar]
  23. Matricardi, P. M., Bjorksten, B., Bonini, S., Bousquet, J., Djukenovic, R., Dreborg, S., Gereda, J., Malling, H. J., Popov, T. & other authors ( 2003; ). Microbial products in allergy prevention and therapy. Allergy 58, 461–471.[CrossRef]
    [Google Scholar]
  24. Oude Lashof, A. M. & Kullberg, B. J. ( 2004; ). Amphotericin B: the end of an era. Ned Tijdschr Geneeskd 148, 1665–1668.
    [Google Scholar]
  25. Rajesh & Sharma, G. L. ( 2002; ). Studies on antimycotic properties of Datura metel. J Ethnopharmacol 80, 193–197.[CrossRef]
    [Google Scholar]
  26. Rapp, R. P. ( 2004; ). Changing strategies for the management of invasive fungal infections. Pharmacotherapy 24, 4S–28S.[CrossRef]
    [Google Scholar]
  27. Richardson, M. D. ( 2005; ). Changing patterns and trends in systemic fungal infections. J Antimicrob Chemother 56, i5–i11.[CrossRef]
    [Google Scholar]
  28. Richardson, M. D. & Warnock, D. W. ( 2003; ). Fungal Infection: Diagnosis and Management, 3rd edn. Oxford: Blackwell Publishing.
  29. Roessner, C. A. & Scott, A. I. ( 1996; ). Genetically engineered synthesis of natural products: from alkaloids to corrins. Annu Rev Microbiol 50, 467–490.[CrossRef]
    [Google Scholar]
  30. Ruchel, R., Perske, C., Glass, B. & Basecke, J. ( 2006; ). A case of pulmonary aspergillosis with lack of response to caspofungin. Rev Iberoam Micol 23, 94–96.[CrossRef]
    [Google Scholar]
  31. Schelenz, S. & Ross, C. N. ( 2006; ). Limitations of caspofungin in the treatment of obstructive pyonephrosis due to Candida glabrata infection. BMC Infect Dis 6, 126 [CrossRef]
    [Google Scholar]
  32. Sims-McCallum, R. P. ( 2003; ). Triple antifungal therapy for the treatment of invasive aspergillosis in a neutropenic pediatric patient. Am J Health Syst Pharm 60, 2352–2356.
    [Google Scholar]
  33. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. & Klenk, D. C. ( 1985; ). Measurement of protein using bicinchoninic acid. Anal Biochem 150, 76–85.[CrossRef]
    [Google Scholar]
  34. Sorensen, K. N., Kim, K. H. & Takemoto, J. Y. ( 1996; ). In vitro antifungal and fungicidal activities and erythrocytes toxicities of Pseudomonas syringae pv. syringae. Antimicrob Agents Chemother 40, 2710–2713.
    [Google Scholar]
  35. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  36. Wegner, B., Baer, P., Gauer, S., Oremek, G., Hauser, I. A. & Geiger, H. ( 2005; ). Caspofungin is less nephrotoxic than amphotericin B in vitro and predominantly damages distal renal tubular cells. Nephrol Dial Transplant 20, 2071–2079.[CrossRef]
    [Google Scholar]
  37. Woo, J. H., Kitamura, E., Myuoga, H. & Yuto, K. ( 2002; ). An antifungal protein from the marine bacterium Streptomyces sp. strain AP77 is specific for Pythium porphyrae, a causative agent of red rot disease in Porphyra spp. Appl Environ Microbiol 68, 2666–2675.[CrossRef]
    [Google Scholar]
  38. Yadav, V., Mandhan, R., Dabur, R., Chhillar, A. K., Gupta, J. & Sharma, G. L. ( 2005; ). An antifungal fraction from Escherichia coli. J Med Microbiol 54, 375–379.[CrossRef]
    [Google Scholar]
  39. Zaas, A. K. & Alexander, B. D. ( 2005; ). Echinocandins: role in antifungal therapy. Expert Opin Pharmacother 6, 1657–1668.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46973-0
Loading
/content/journal/jmm/10.1099/jmm.0.46973-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error