1887

Abstract

A prospective study was conducted of the rapid test for determination of rifampicin resistance in with and without the addition of an antimicrobial supplement containing nystatin, oxacillin and aztreonam (NOA) to control specimen-related contamination. A total of 631 smear-positive sputum specimens was tested. The age of specimens ranged from 0 to 21 days. The NOA antimicrobial was effective at controlling contamination, with 4.1 % of specimens contaminated when the NOA antimicrobial supplement was used compared with 13.9 % contamination without NOA. Overall levels of interpretability of the test with NOA were 87.8 % with specimens of ≤3 days and 79.0 % for all specimens. This compared with 70.1 and 73.8 % readable results, respectively, from conventional culture-based drug susceptibility testing (DST). Sensitivity, specificity and overall accuracy of the test for rifampicin resistance were 98.1, 96.3 and 96.6 %, respectively, for all specimens with NOA, and 93.2, 96.3 and 95.9 % without NOA, when compared with resolved conventional DST results. Inclusion of the NOA supplement reduced contamination, increased the number of interpretable results and did not adversely affect the performance of the test. Thus, the use of NOA improves the robustness of the test, facilitating its wider implementation.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46936-0
2007-10-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/10/1334.html?itemId=/content/journal/jmm/10.1099/jmm.0.46936-0&mimeType=html&fmt=ahah

References

  1. Albert, H., Heydenrych, A., Mole, R., Trollip, A. P. & Blumberg, L. ( 2001; ). Evaluation of FASTPlaqueTB-RIF, a rapid, manual test for the determination of rifampicin resistance from M. tuberculosis cultures. Int J Tuberc Lung Dis 5, 906–911.
    [Google Scholar]
  2. Albert, H., Heydenrych, A., Brookes, R., Mole, R. J., Harley, B., Subotsky, E., Henry, R. & Azevedo, V. ( 2002; ). Performance of a rapid phage-based test, FASTPlaqueTB, to diagnose pulmonary tuberculosis from sputum specimens in South Africa. Int J Tuberc Lung Dis 6, 529–537.
    [Google Scholar]
  3. Albert, H., Trollip, A., Seaman, T. & Mole, R. J. ( 2004; ). Simple, phage-based (FASTPlaque) technology to determine rifampicin resistance of Mycobacterium tuberculosis directly from sputum. Int J Tuberc Lung Dis 8, 1114–1119.
    [Google Scholar]
  4. Allen, B. W. ( 1984; ). Tuberculosis bacteriology in developing countries. Med Lab Sci 41, 400–409.
    [Google Scholar]
  5. Cruciani, M., Scarparo, C., Malena, M., Bosco, O., Serpelloni, G. & Mengoli, C. ( 2004; ). Meta-analysis of BACTEC MGIT 960 and BACTEC 460TB, with and without solid media, for detection of Mycobacteria. J Clin Microbiol 42, 2321–2325.[CrossRef]
    [Google Scholar]
  6. Enarson, D. A., Rieder, H. L., Arnadottir, T. & Trebucq, A. ( 2000; ). Management of Tuberculosis. A Guide for Low Income Countries. Paris: International Union Against Tuberculosis and Lung Disease.
  7. Fischl, M. A., Daikos, G. L., Uttamchandrani, R. B., Poblete, R. B., Moreno, J. N., Reyes, R. R., Boota, A. M., Thompson, L. M., Cleary, T. J. & other authors ( 1992; ). Clinical presentation and outcome of patients with HIV infection and tuberculosis caused by multiple drug resistant bacilli. Ann Intern Med 117, 184–190.[CrossRef]
    [Google Scholar]
  8. Guerra, H., Henostroza, G., Rojas, G. & other authors ( 2005; ). Evaluation of a phage amplification assay for detection of MDR-TB in smear-positive patients in Lima, Peru. Int J Tuberc Lung Dis 9 (Suppl. 1), S196
    [Google Scholar]
  9. Heifets, L. B. & Cangelosi, G. A. ( 1999; ). Drug susceptibility testing in Mycobacterium tuberculosis: a neglected problem at the turn of the century. Int J Tuberc Lung Dis 3, 564–581.
    [Google Scholar]
  10. Jacobs, W. R., Barletta, R. G., Udani, R., Chan, J., Kalkut, G., Sosne, G., Kieser, T., Sarkis, G. J., Hatfull, G. F. & Bloom, B. R. ( 1993; ). Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260, 819–822.[CrossRef]
    [Google Scholar]
  11. Kent, P. T. & Kubica, G. P. ( 1985; ). Public Health Mycobacteriology. A Guide for the Level III Laboratory. Atlanta, GA: Centres for Disease Control.
  12. Kisa, O., Albay, A., Bedir, O., Baylan, O. & Doganci, L. ( 2003; ). Evaluation of FASTPlaqueTB-RIF for determination of rifampicin resistance in Mycobacterium tuberculosis complex isolates. Int J Tuberc Lung Dis 7, 284–288.
    [Google Scholar]
  13. Morgan, M., Kalantri, S., Flores, L. & Pai, M. ( 2005; ). A commercial line probe assay for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. BMC Infect Dis 5, 62 [CrossRef]
    [Google Scholar]
  14. Muzaffar, R., Batool, S., Aziz, F., Naqvi, A. & Rizvi, A. ( 2002; ). Evaluation of the FASTPlaqueTB assay for direct detection of Mycobacterium tuberculosis in sputum specimens. Int J Tuberc Lung Dis 6, 635–640.
    [Google Scholar]
  15. Pai, M., Kalantri, S. & Dheda, K. ( 2006; ). New tools and emerging technologies for the diagnosis of tuberculosis: part II. Active tuberculosis and drug resistance. Expert Rev Mol Diagn 6, 423–432.[CrossRef]
    [Google Scholar]
  16. Seaman, T., Trollip, A., Mole, R. & Albert, H. ( 2003; ). The use of a novel phage-based technology as a practical tool for the diagnosis of tuberculosis in Africa. Afr J Biotechnol 2, 40–45.[CrossRef]
    [Google Scholar]
  17. Suarez, P. G., Floyd, K., Portocarrero, J., Alarcon, E., Rapiti, E., Ramos, G., Bonilla, C., Sabogal, I., Aranda, I. & other authors ( 2002; ). Feasibility and cost-effectiveness of standardised second-line drug treatment for chronic tuberculosis patients: a national cohort study in Peru. Lancet 359, 1980–1989.[CrossRef]
    [Google Scholar]
  18. Victor, T. C., Jordaan, A. M., van Rie, A., van der Spuy, G. D., Richardson, M., van Helden, P. D. & Warren, R. ( 1999; ). Detection of mutations in drug resistance genes of Mycobacterium tuberculosis by a dot-blot hybridisation strategy. Tuber Lung Dis 79, 343–348.[CrossRef]
    [Google Scholar]
  19. WHO ( 2003; ). Treatment of Tuberculosis: Guidelines for National Programs. Geneva: World Health Organization.
  20. WHO ( 2004; ). Anti-Tuberculosis Drug Resistance in the World: Report 3. Geneva: World Health Organization.
  21. Wilson, S. M. ( 1997; ). Method to detect bacteria. PCT patent WO97/022713.
  22. Wilson, S. M., Al-Suwaidi, Z., McNerney, R., Porter, J. & Drobniewski, F. ( 1997; ). Evaluation of a new rapid bacteriophage-based method for the drug susceptibility testing of Mycobacterium tuberculosis. Nat Med 3, 465–468.[CrossRef]
    [Google Scholar]
  23. Zignol, M., Hosseini, M. S., Wright, A., Weezenbeek, C. L., Nunn, P., Watt, C. J., Williams, B. G. & Dye, C. ( 2006; ). Global incidence of multidrug-resistant tuberculosis. J Infect Dis 194, 479–485.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46936-0
Loading
/content/journal/jmm/10.1099/jmm.0.46936-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error