1887

Abstract

The PE and PPE proteins of form a source of antigenic variation among different strains of . One of the PE_PGRS proteins, Rv1818c, plays a role in the pathogenesis of mycobacterial infection and specifically influences host-cell responses to tuberculosis infection. Although little is known about these two classes of protein, an immunoinformatics approach has indicated the possibility of their participation in eliciting a major histocompatibility complex (MHC) class I-mediated immune response against tuberculosis, as peptides derived from Rv1818c are predicted to bind to MHC class I molecules with high affinity. In the present work, a DNA vaccine was constructed encoding the full-length Rv1818c protein of and its immunogenicity was analysed in BALB/c mice. Immunization with Rv1818c DNA induced a strong CD8 cytotoxic lymphocyte and Th1-type response, with high levels of gamma interferon (IFN-) and low levels of interleukin-4. Two nonameric peptides (Peptide and Peptide) from Rv1818c were identified by their ability to induce the production of IFN- by CD8 T cells in mice immunized with Rv1818c DNA. An epitope-specific response was demonstrated by the lysis of peptide-pulsed antigen-presenting cells, release of cytotoxic granules and IFN- production. These peptides bound with high affinity to MHC H-2K and showed low dissociation rates of peptide–MHC complexes. These results could form the basis for testing the identified T-cell epitopes of PE_PGRS proteins in the induction of protective immunity against challenge in the mouse model.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46928-0
2007-04-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/4/466.html?itemId=/content/journal/jmm/10.1099/jmm.0.46928-0&mimeType=html&fmt=ahah

References

  1. Betts M. R., Casazza J. P., Koup R. A. 2001; Monitoring HIV-specific CD8+ T cell response by intracellular cytokine production. Immunol Lett 79:117–125 [CrossRef]
    [Google Scholar]
  2. Bonato V. L., Lima V. M., Tascon R. E., Lowrie D. B., Silva C. L. 1998; Identification and characterization of protective T cells in hsp65 DNA-vaccinated and Mycobacterium tuberculosis -infected mice. Infect Immun 66:169–175
    [Google Scholar]
  3. Brennan M. J., Delogu G. 2002; The PE multigene family, a ‘molecular mantra’ for mycobacteria. Trends Microbiol 10:246–249 [CrossRef]
    [Google Scholar]
  4. Brennan M. J., Delogu G., Chen Y., Bardarov S., Kriakov J., Alavi M., Jacobs W. R. Jr 2001; Evidence that mycobacterial PE_PGRS proteins are cell surface constituents that influence interactions with other cells. Infect Immun 69:7326–7333 [CrossRef]
    [Google Scholar]
  5. Caccamo N., Milano S., Di Sano C., Cigna D., Ivanyi J., Krensky A. M., Dieli F., Salerno A. 2002; Identification of epitopes of Mycobacterium tuberculosis 16-kDa protein recognized by human leukocyte antigen-A*0201 CD8+ T lymphocytes. J Infect Dis 186:991–998 [CrossRef]
    [Google Scholar]
  6. Canaday D. H., Ziebold C., Noss E. H., Chervenak K. A., Harding C. V., Boom W. H. 1999; Activation of human CD8+ αβ TCR+ cells by Mycobacterium tuberculosis via an alternate class I MHC antigen-processing pathway. J Immunol 162:372–379
    [Google Scholar]
  7. Chaitra M. G., Hariharaputran S., Chandra N. R., Shaila M. S., Nayak R. 2005; Defining putative T cell epitopes from PE and PPE families of proteins of Mycobacterium tuberculosis with vaccine potential. Vaccine 23:1265–1272 [CrossRef]
    [Google Scholar]
  8. Chen W., Yewdell J. W., Levine R. L., Bennink J. R. 1999; Modification of cysteine residues in vitro and in vivo affects the immunogenicity and antigenicity of major histocompatibility complex class I-restricted viral determinants. J Exp Med 189:1757–1764 [CrossRef]
    [Google Scholar]
  9. Cho S., Mehra V., Thoma-Uszynski S., Stenger S., Serbina N., Mazzaccaro R., Flynn J. L., Barnes P. F., Southwood S. other authors 2000; Antimicrobial activity of MHC class I-restricted CD8+ T cells in human tuberculosis. Proc Natl Acad Sci U S A 97:12210–12215 [CrossRef]
    [Google Scholar]
  10. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  11. Cooper A. M., Dalto D. K., Stewart T. A., Griffin J. P., Russel D. G., Orme I. M. 1993; Disseminated tuberculosis in interferon- γ gene disrupted mice. J Exp Med 178:2243–2247 [CrossRef]
    [Google Scholar]
  12. da Fonseca D. P. A. J., Joosten D., van der Zee R., Jue D. L., Singh M., Vordermeier H. M., Snippe H., Verheul A. F. M. 1998; Identification of new cytotoxic T-cell epitopes on the 38-kilodalton lipoglycoprotein of Mycobacterium tuberculosis by using lipopeptides. Infect Immun 66:3190–3197
    [Google Scholar]
  13. De Libero G., Flesch I., Kaufmann S. H. E. 1988; Mycobacteria-reactive Lyt-2+ T cell lines. Eur J Immunol 18:59–66 [CrossRef]
    [Google Scholar]
  14. Delogu G., Brennan M. J. 2001; Comparative immune response to PE and PE_PGRS antigens of Mycobacterium tuberculosis . Infect Immun 69:5606–5611 [CrossRef]
    [Google Scholar]
  15. Delogu G., Sanguinetti M., Pusceddu C., Bua A., Brennan M. J., Zanetti S., Fadda G. 2006; PE_PGRS proteins are differentially expressed by Mycobacterium tuberculosis in host tissues. Microbes Infect 8:2061–2067 [CrossRef]
    [Google Scholar]
  16. Dheenadhayalan V., Delogu G., Brennan M. J. 2006; Expression of the PE_PGRS 33 protein in Mycobacterium smegmatis triggers necrosis in macrophages and enhanced mycobacterial survival. Microbes Infect 8:262–272 [CrossRef]
    [Google Scholar]
  17. Fine P. E. 1995; Variation in protection by BCG, implications of and for heterologous immunity. Lancet 346:1339–1345 [CrossRef]
    [Google Scholar]
  18. Flynn J. L., Chan J. 2001; Immunology of tuberculosis. Annu Rev Immunol 19:93–129 [CrossRef]
    [Google Scholar]
  19. Flynn J. L., Goldstein M. M., Triebold K. J., Koller B., Bloom B. R. 1992; Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis . Proc Natl Acad Sci U S A 89:12013–12017 [CrossRef]
    [Google Scholar]
  20. Flynn J. L., Chan J., Triebold K. J., Dalton D. K., Stewart T. A., Bloom B. R. 1993; An essential role for interferon- γ in resistance to Mycobacterium tuberculosis infection. J Exp Med 178:2249–2254 [CrossRef]
    [Google Scholar]
  21. Geluk A., van Meijgaarden K. E., Franken K. L., Drijfhout J. W., D’Souza S., Necker A., Huygen K., Ottenhoff T. H. 2000; Identification of major epitopes of Mycobacterium tuberculosis AG85B that are recognized by HLA-A*0201-restricted CD8+ T cells in HLA-transgenic mice and humans. J Immunol 165:6463–6471 [CrossRef]
    [Google Scholar]
  22. Kang Y., Calvo P. A., Daly T. M., Long C. A. 1998; Comparison of humoral immune responses elicited by DNA and protein vaccines based on merozoite surface protein-1 from Plasmodium yoelii , a rodent malaria parasite. J Immunol 161:4211–4219
    [Google Scholar]
  23. Kaufmann S. H. E. 2001; How can immunology contribute to the control of tuberculosis?. Nat Rev Immunol 1:20–27 [CrossRef]
    [Google Scholar]
  24. Klein M. R., Smith S. M., Hammond A. S., Ogg G. S., King A. S., Vekemans J., Jaye A., Lukey P. T., McAdam K. P. 2001; HLA-B*35-restricted CD8 T cell epitopes in the antigen 85 complex of Mycobacterium tuberculosis . J Infect Dis 183:928–934 [CrossRef]
    [Google Scholar]
  25. Kochi A. 1991; The global tuberculosis situation and the new control strategy of the World Health Organization. Tubercle 72:1–6 [CrossRef]
    [Google Scholar]
  26. Koksoy S., Kakoulidis T. P., Shirwan H. 2004; Chronic heart allograft rejection in rats demonstrates a dynamic interplay between IFN- γ and IL-10 producing T cells. Transpl Immunol 13:201–209 [CrossRef]
    [Google Scholar]
  27. Kumararatne D. S., Pithie A. S., Drysdale P., Gaston J. S. H., Kiessling R. P., Iles B., Ellis C. J., Innes J., Wise R. 1990; Specific lysis of mycobacterial antigen-bearing macrophages by class II MHC-restricted polyclonal T cell lines in healthy donors or patients with tuberculosis. Clin Exp Immunol 80:314–323
    [Google Scholar]
  28. Ladel C. H., Daugelat S., Kaufmann S. H. E. 1995; Immune response to Mycobacterium bovis bacille Calmette Guerin infection in major histocompatibility complex class I- and II-deficient knock-out mice: contribution of CD4 and CD8 T cells to acquired resistance. Eur J Immunol 25:377–384 [CrossRef]
    [Google Scholar]
  29. Lalvani A., Brookes R., Wilkinson R. J., Malin A. S., Pathan A. A., Andersen P., Dockrell H., Pasvol G., Hill A. V. 1998; Human cytolytic and interferon γ -secreting CD8+ T lymphocytes specific for Mycobacterium tuberculosis . Proc Natl Acad Sci U S A 95:270–275 [CrossRef]
    [Google Scholar]
  30. Lewinsohn D. M., Alderson M. R., Briden A. L., Riddell S. G., Reed S., Grabstein K. H. 1998; Characterization of human CD8+ T cells reactive with Mycobacterium tuberculosis -infected antigen-presenting cells. J Exp Med 187:1633–1640 [CrossRef]
    [Google Scholar]
  31. Ljunggren H. G., Stam N. J., Ohlen C., Neefjes J. J., Hoglund P., Heemels M. T., Bastin J., Schumacher T. N., Townsend A., Karre K. 1990; Empty MHC class I molecules come out in the cold. Nature 346:476–480 [CrossRef]
    [Google Scholar]
  32. Lowrie D. B., Silva C. L., Colston M. J., Ragno S., Tascon R. E. 1997; Protection against tuberculosis by a plasmid DNA vaccine. Vaccine 15:834–838 [CrossRef]
    [Google Scholar]
  33. Ogata K., Jaramillo A., Cohen W., Briand J. P., Connan F., Choppin J., Muller S., Wodak S. J. 2003; Automatic sequence design of major histocompatibility complex class I binding peptides impairing CD8+ T cell recognition. J Biol Chem 278:1281–1290 [CrossRef]
    [Google Scholar]
  34. Ottenhoff T. H. M., Mutis T. 1995; Role of cytotoxic cells in the protective immunity against and immunopathology of intracellular infections. Eur J Clin Invest 25:371–377 [CrossRef]
    [Google Scholar]
  35. Parker K. C., Bednarek M. A., Coligan J. E. 1994; Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152:163–175
    [Google Scholar]
  36. Pathan A. A., Wilkinson K. A., Wilkinson R. J., Latif M., McShane H., Pasvol G., Hill A. V. S., Lavlani A. 2000; High frequencies of circulating IFN- γ secreting CD8+ cytotoxic T cells specific for a novel MHC class-I restricted Mycobacterium tuberculosis epitope in Mycobacterium tuberculosis -infected subjects without disease. Eur J Immunol 30:2713–2721 [CrossRef]
    [Google Scholar]
  37. Putkonen P., Quesada-Rolander M., Leandersson A. C., Schwartz S., Thorstensson R., Okuda K., Wahren B., Hinkula J. 1998; Immune responses but no protection against SHIV by gene-gun delivery of HIV-1 DNA followed by recombinant protein boosts. Virology 250:293–301 [CrossRef]
    [Google Scholar]
  38. Rachman H., Strong M., Ulrichs T., Grode L., Schuchhardt J., Mollenkopf H., Kosmiadi G. A., Eisenberg D., Kaufmann S. H. 2006; Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect Immun 74:1233–1242 [CrossRef]
    [Google Scholar]
  39. Rammensee H. G., Bachmann J., Emmerich N. P., Bachor O. A., Stevanovic S. 1999; SYFPEITHI, database for MHC ligands and peptide motifs. Immunogenetics 50:213–219 [CrossRef]
    [Google Scholar]
  40. Ramshaw I. A., Ramsay A. J. 2000; The prime–boost strategy, exciting prospects for improved vaccination. Immunol Today 21:163–165 [CrossRef]
    [Google Scholar]
  41. Razeghifard M. R. 2004; On-column refolding of recombinant human interleukin-4 from inclusion bodies. Protein Expr Purif 37:180–186 [CrossRef]
    [Google Scholar]
  42. Rees A., Scoging A., Mehlert A., Young D. B., Ivanyi J. 1988; Specificity of proliferative response of human CD8 clones to mycobacterial antigens. Eur J Immunol 18:1881–1887 [CrossRef]
    [Google Scholar]
  43. Richmond J. F. L., Lu S., Santoro J. C., Weng J., Hu S.-L., Montefiori D. C., Robinson H. L. 1998; Studies of the neutralizing activity and avidity of anti-human immunodeficiency virus type 1 Env antibody elicited by DNA priming and protein boosting. J Virol 72:9092–9100
    [Google Scholar]
  44. Rock K. L., Gramm C., Benacerraf B. 1991; Low temperature and peptides favor the formation of class I heterodimers on RMA-S cells at the cell surface. Proc Natl Acad Sci U S A 88:4200–4204 [CrossRef]
    [Google Scholar]
  45. Schneider J., Gilbert S. C., Blanchard T. J., Hanke T., Robson K. J., Hannan C. M., Becker M., Sinden R., Smith G. L., Hill A. V. S. 1998; Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat Med 4:397–402 [CrossRef]
    [Google Scholar]
  46. Sinnathamby G., Renukaradhya G. J., Rajasekhar M., Nayak R., Shaila M. S. 2001; Recombinant hemagglutinin protein of rinderpest virus expressed in insect cells induces cytotoxic T-cell responses in cattle. Viral Immunol 14:349–358 [CrossRef]
    [Google Scholar]
  47. Snapper C. M., Paul W. E. 1987; Interferon- γ and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236:944–947 [CrossRef]
    [Google Scholar]
  48. Song M. K., Lee S. W., Suh Y. S., Lee K. J., Sung Y. C. 2000; Enhancement of immunoglobulin G2a and cytotoxic T-lymphocyte responses by a booster immunization with recombinant hepatitis C virus E2 protein in E2 DNA-primed mice. J Virol 74:2920–2925 [CrossRef]
    [Google Scholar]
  49. Sousa A. O., Mazzaccaro R. J., Russell R. G., Lee F. K., Turner O. C., Hong S., Van Kaer L., Bloom B. R. 2000; Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice. Proc Natl Acad Sci U S A 97:4204–4208 [CrossRef]
    [Google Scholar]
  50. Stenger S., Mazzaccaro R. J., Porcelli S. A., Cho S., Uyemura K., Barnes P. F., Rosat J. P., Sette A., Brenner M. B. other authors 1997; Differential effects of cytolytic T cell subsets on intracellular infection. Science 276:1684–1687 [CrossRef]
    [Google Scholar]
  51. Tan J. S., Canaday D. H., Boom W. H., Balaji K. N., Schwander S. K., Rich E. A. 1997; Human alveolar T lymphocyte responses to Mycobacterium tuberculosis antigens, role for CD4+ and CD8+ cytotoxic T cells and relative resistance of alveolar macrophages to lysis. J Immunol 159:290–297
    [Google Scholar]
  52. Vordermeier H. M., Zhu X., Harris D. P. 1997; Induction of CD8+ CTL recognizing mycobacterial peptides. Scand J Immunol 45:521–526 [CrossRef]
    [Google Scholar]
  53. Xing Z. 2001; The hunt for new tuberculosis vaccines: anti-TB immunity and rational design of vaccines. Curr Pharm Des 7:1015–1037 [CrossRef]
    [Google Scholar]
  54. Zhou X., Abdel Motal U. M., Berg L., Jondal M. 1992; In vivo priming of cytotoxic T lymphocyte responses in relation to in vitro up-regulation of major histocompatibility complex class I molecules by short synthetic peptides. Eur J Immunol 22:3085–3090 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46928-0
Loading
/content/journal/jmm/10.1099/jmm.0.46928-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error