1887

Abstract

The PE and PPE proteins of form a source of antigenic variation among different strains of . One of the PE_PGRS proteins, Rv1818c, plays a role in the pathogenesis of mycobacterial infection and specifically influences host-cell responses to tuberculosis infection. Although little is known about these two classes of protein, an immunoinformatics approach has indicated the possibility of their participation in eliciting a major histocompatibility complex (MHC) class I-mediated immune response against tuberculosis, as peptides derived from Rv1818c are predicted to bind to MHC class I molecules with high affinity. In the present work, a DNA vaccine was constructed encoding the full-length Rv1818c protein of and its immunogenicity was analysed in BALB/c mice. Immunization with Rv1818c DNA induced a strong CD8 cytotoxic lymphocyte and Th1-type response, with high levels of gamma interferon (IFN-) and low levels of interleukin-4. Two nonameric peptides (Peptide and Peptide) from Rv1818c were identified by their ability to induce the production of IFN- by CD8 T cells in mice immunized with Rv1818c DNA. An epitope-specific response was demonstrated by the lysis of peptide-pulsed antigen-presenting cells, release of cytotoxic granules and IFN- production. These peptides bound with high affinity to MHC H-2K and showed low dissociation rates of peptide–MHC complexes. These results could form the basis for testing the identified T-cell epitopes of PE_PGRS proteins in the induction of protective immunity against challenge in the mouse model.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46928-0
2007-04-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/4/466.html?itemId=/content/journal/jmm/10.1099/jmm.0.46928-0&mimeType=html&fmt=ahah

References

  1. Betts, M. R., Casazza, J. P. & Koup, R. A. ( 2001; ). Monitoring HIV-specific CD8+ T cell response by intracellular cytokine production. Immunol Lett 79, 117–125.[CrossRef]
    [Google Scholar]
  2. Bonato, V. L., Lima, V. M., Tascon, R. E., Lowrie, D. B. & Silva, C. L. ( 1998; ). Identification and characterization of protective T cells in hsp65 DNA-vaccinated and Mycobacterium tuberculosis-infected mice. Infect Immun 66, 169–175.
    [Google Scholar]
  3. Brennan, M. J. & Delogu, G. ( 2002; ). The PE multigene family, a ‘molecular mantra’ for mycobacteria. Trends Microbiol 10, 246–249.[CrossRef]
    [Google Scholar]
  4. Brennan, M. J., Delogu, G., Chen, Y., Bardarov, S., Kriakov, J., Alavi, M. & Jacobs, W. R., Jr ( 2001; ). Evidence that mycobacterial PE_PGRS proteins are cell surface constituents that influence interactions with other cells. Infect Immun 69, 7326–7333.[CrossRef]
    [Google Scholar]
  5. Caccamo, N., Milano, S., Di Sano, C., Cigna, D., Ivanyi, J., Krensky, A. M., Dieli, F. & Salerno, A. ( 2002; ). Identification of epitopes of Mycobacterium tuberculosis 16-kDa protein recognized by human leukocyte antigen-A*0201 CD8+ T lymphocytes. J Infect Dis 186, 991–998.[CrossRef]
    [Google Scholar]
  6. Canaday, D. H., Ziebold, C., Noss, E. H., Chervenak, K. A., Harding, C. V. & Boom, W. H. ( 1999; ). Activation of human CD8+ αβ TCR+ cells by Mycobacterium tuberculosis via an alternate class I MHC antigen-processing pathway. J Immunol 162, 372–379.
    [Google Scholar]
  7. Chaitra, M. G., Hariharaputran, S., Chandra, N. R., Shaila, M. S. & Nayak, R. ( 2005; ). Defining putative T cell epitopes from PE and PPE families of proteins of Mycobacterium tuberculosis with vaccine potential. Vaccine 23, 1265–1272.[CrossRef]
    [Google Scholar]
  8. Chen, W., Yewdell, J. W., Levine, R. L. & Bennink, J. R. ( 1999; ). Modification of cysteine residues in vitro and in vivo affects the immunogenicity and antigenicity of major histocompatibility complex class I-restricted viral determinants. J Exp Med 189, 1757–1764.[CrossRef]
    [Google Scholar]
  9. Cho, S., Mehra, V., Thoma-Uszynski, S., Stenger, S., Serbina, N., Mazzaccaro, R., Flynn, J. L., Barnes, P. F., Southwood, S. & other authors ( 2000; ). Antimicrobial activity of MHC class I-restricted CD8+ T cells in human tuberculosis. Proc Natl Acad Sci U S A 97, 12210–12215.[CrossRef]
    [Google Scholar]
  10. Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S. & other authors ( 1998; ). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.[CrossRef]
    [Google Scholar]
  11. Cooper, A. M., Dalto, D. K., Stewart, T. A., Griffin, J. P., Russel, D. G. & Orme, I. M. ( 1993; ). Disseminated tuberculosis in interferon-γ gene disrupted mice. J Exp Med 178, 2243–2247.[CrossRef]
    [Google Scholar]
  12. da Fonseca, D. P. A. J., Joosten, D., van der Zee, R., Jue, D. L., Singh, M., Vordermeier, H. M., Snippe, H. & Verheul, A. F. M. ( 1998; ). Identification of new cytotoxic T-cell epitopes on the 38-kilodalton lipoglycoprotein of Mycobacterium tuberculosis by using lipopeptides. Infect Immun 66, 3190–3197.
    [Google Scholar]
  13. De Libero, G., Flesch, I. & Kaufmann, S. H. E. ( 1988; ). Mycobacteria-reactive Lyt-2+ T cell lines. Eur J Immunol 18, 59–66.[CrossRef]
    [Google Scholar]
  14. Delogu, G. & Brennan, M. J. ( 2001; ). Comparative immune response to PE and PE_PGRS antigens of Mycobacterium tuberculosis. Infect Immun 69, 5606–5611.[CrossRef]
    [Google Scholar]
  15. Delogu, G., Sanguinetti, M., Pusceddu, C., Bua, A., Brennan, M. J., Zanetti, S. & Fadda, G. ( 2006; ). PE_PGRS proteins are differentially expressed by Mycobacterium tuberculosis in host tissues. Microbes Infect 8, 2061–2067.[CrossRef]
    [Google Scholar]
  16. Dheenadhayalan, V., Delogu, G. & Brennan, M. J. ( 2006; ). Expression of the PE_PGRS 33 protein in Mycobacterium smegmatis triggers necrosis in macrophages and enhanced mycobacterial survival. Microbes Infect 8, 262–272.[CrossRef]
    [Google Scholar]
  17. Fine, P. E. ( 1995; ). Variation in protection by BCG, implications of and for heterologous immunity. Lancet 346, 1339–1345.[CrossRef]
    [Google Scholar]
  18. Flynn, J. L. & Chan, J. ( 2001; ). Immunology of tuberculosis. Annu Rev Immunol 19, 93–129.[CrossRef]
    [Google Scholar]
  19. Flynn, J. L., Goldstein, M. M., Triebold, K. J., Koller, B. & Bloom, B. R. ( 1992; ). Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 89, 12013–12017.[CrossRef]
    [Google Scholar]
  20. Flynn, J. L., Chan, J., Triebold, K. J., Dalton, D. K., Stewart, T. A. & Bloom, B. R. ( 1993; ). An essential role for interferon-γ in resistance to Mycobacterium tuberculosis infection. J Exp Med 178, 2249–2254.[CrossRef]
    [Google Scholar]
  21. Geluk, A., van Meijgaarden, K. E., Franken, K. L., Drijfhout, J. W., D’Souza, S., Necker, A., Huygen, K. & Ottenhoff, T. H. ( 2000; ). Identification of major epitopes of Mycobacterium tuberculosis AG85B that are recognized by HLA-A*0201-restricted CD8+ T cells in HLA-transgenic mice and humans. J Immunol 165, 6463–6471.[CrossRef]
    [Google Scholar]
  22. Kang, Y., Calvo, P. A., Daly, T. M. & Long, C. A. ( 1998; ). Comparison of humoral immune responses elicited by DNA and protein vaccines based on merozoite surface protein-1 from Plasmodium yoelii, a rodent malaria parasite. J Immunol 161, 4211–4219.
    [Google Scholar]
  23. Kaufmann, S. H. E. ( 2001; ). How can immunology contribute to the control of tuberculosis?. Nat Rev Immunol 1, 20–27.[CrossRef]
    [Google Scholar]
  24. Klein, M. R., Smith, S. M., Hammond, A. S., Ogg, G. S., King, A. S., Vekemans, J., Jaye, A., Lukey, P. T. & McAdam, K. P. ( 2001; ). HLA-B*35-restricted CD8 T cell epitopes in the antigen 85 complex of Mycobacterium tuberculosis. J Infect Dis 183, 928–934.[CrossRef]
    [Google Scholar]
  25. Kochi, A. ( 1991; ). The global tuberculosis situation and the new control strategy of the World Health Organization. Tubercle 72, 1–6.[CrossRef]
    [Google Scholar]
  26. Koksoy, S., Kakoulidis, T. P. & Shirwan, H. ( 2004; ). Chronic heart allograft rejection in rats demonstrates a dynamic interplay between IFN-γ and IL-10 producing T cells. Transpl Immunol 13, 201–209.[CrossRef]
    [Google Scholar]
  27. Kumararatne, D. S., Pithie, A. S., Drysdale, P., Gaston, J. S. H., Kiessling, R. P., Iles, B., Ellis, C. J., Innes, J. & Wise, R. ( 1990; ). Specific lysis of mycobacterial antigen-bearing macrophages by class II MHC-restricted polyclonal T cell lines in healthy donors or patients with tuberculosis. Clin Exp Immunol 80, 314–323.
    [Google Scholar]
  28. Ladel, C. H., Daugelat, S. & Kaufmann, S. H. E. ( 1995; ). Immune response to Mycobacterium bovis bacille Calmette Guerin infection in major histocompatibility complex class I- and II-deficient knock-out mice: contribution of CD4 and CD8 T cells to acquired resistance. Eur J Immunol 25, 377–384.[CrossRef]
    [Google Scholar]
  29. Lalvani, A., Brookes, R., Wilkinson, R. J., Malin, A. S., Pathan, A. A., Andersen, P., Dockrell, H., Pasvol, G. & Hill, A. V. ( 1998; ). Human cytolytic and interferon γ-secreting CD8+ T lymphocytes specific for Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 95, 270–275.[CrossRef]
    [Google Scholar]
  30. Lewinsohn, D. M., Alderson, M. R., Briden, A. L., Riddell, S. G., Reed, S. & Grabstein, K. H. ( 1998; ). Characterization of human CD8+ T cells reactive with Mycobacterium tuberculosis-infected antigen-presenting cells. J Exp Med 187, 1633–1640.[CrossRef]
    [Google Scholar]
  31. Ljunggren, H. G., Stam, N. J., Ohlen, C., Neefjes, J. J., Hoglund, P., Heemels, M. T., Bastin, J., Schumacher, T. N., Townsend, A. & Karre, K. ( 1990; ). Empty MHC class I molecules come out in the cold. Nature 346, 476–480.[CrossRef]
    [Google Scholar]
  32. Lowrie, D. B., Silva, C. L., Colston, M. J., Ragno, S. & Tascon, R. E. ( 1997; ). Protection against tuberculosis by a plasmid DNA vaccine. Vaccine 15, 834–838.[CrossRef]
    [Google Scholar]
  33. Ogata, K., Jaramillo, A., Cohen, W., Briand, J. P., Connan, F., Choppin, J., Muller, S. & Wodak, S. J. ( 2003; ). Automatic sequence design of major histocompatibility complex class I binding peptides impairing CD8+ T cell recognition. J Biol Chem 278, 1281–1290.[CrossRef]
    [Google Scholar]
  34. Ottenhoff, T. H. M. & Mutis, T. ( 1995; ). Role of cytotoxic cells in the protective immunity against and immunopathology of intracellular infections. Eur J Clin Invest 25, 371–377.[CrossRef]
    [Google Scholar]
  35. Parker, K. C., Bednarek, M. A. & Coligan, J. E. ( 1994; ). Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152, 163–175.
    [Google Scholar]
  36. Pathan, A. A., Wilkinson, K. A., Wilkinson, R. J., Latif, M., McShane, H., Pasvol, G., Hill, A. V. S. & Lavlani, A. ( 2000; ). High frequencies of circulating IFN-γ secreting CD8+ cytotoxic T cells specific for a novel MHC class-I restricted Mycobacterium tuberculosis epitope in Mycobacterium tuberculosis-infected subjects without disease. Eur J Immunol 30, 2713–2721.[CrossRef]
    [Google Scholar]
  37. Putkonen, P., Quesada-Rolander, M., Leandersson, A. C., Schwartz, S., Thorstensson, R., Okuda, K., Wahren, B. & Hinkula, J. ( 1998; ). Immune responses but no protection against SHIV by gene-gun delivery of HIV-1 DNA followed by recombinant protein boosts. Virology 250, 293–301.[CrossRef]
    [Google Scholar]
  38. Rachman, H., Strong, M., Ulrichs, T., Grode, L., Schuchhardt, J., Mollenkopf, H., Kosmiadi, G. A., Eisenberg, D. & Kaufmann, S. H. ( 2006; ). Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect Immun 74, 1233–1242.[CrossRef]
    [Google Scholar]
  39. Rammensee, H. G., Bachmann, J., Emmerich, N. P., Bachor, O. A. & Stevanovic, S. ( 1999; ). SYFPEITHI, database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219.[CrossRef]
    [Google Scholar]
  40. Ramshaw, I. A. & Ramsay, A. J. ( 2000; ). The prime–boost strategy, exciting prospects for improved vaccination. Immunol Today 21, 163–165.[CrossRef]
    [Google Scholar]
  41. Razeghifard, M. R. ( 2004; ). On-column refolding of recombinant human interleukin-4 from inclusion bodies. Protein Expr Purif 37, 180–186.[CrossRef]
    [Google Scholar]
  42. Rees, A., Scoging, A., Mehlert, A., Young, D. B. & Ivanyi, J. ( 1988; ). Specificity of proliferative response of human CD8 clones to mycobacterial antigens. Eur J Immunol 18, 1881–1887.[CrossRef]
    [Google Scholar]
  43. Richmond, J. F. L., Lu, S., Santoro, J. C., Weng, J., Hu, S.-L., Montefiori, D. C. & Robinson, H. L. ( 1998; ). Studies of the neutralizing activity and avidity of anti-human immunodeficiency virus type 1 Env antibody elicited by DNA priming and protein boosting. J Virol 72, 9092–9100.
    [Google Scholar]
  44. Rock, K. L., Gramm, C. & Benacerraf, B. ( 1991; ). Low temperature and peptides favor the formation of class I heterodimers on RMA-S cells at the cell surface. Proc Natl Acad Sci U S A 88, 4200–4204.[CrossRef]
    [Google Scholar]
  45. Schneider, J., Gilbert, S. C., Blanchard, T. J., Hanke, T., Robson, K. J., Hannan, C. M., Becker, M., Sinden, R., Smith, G. L. & Hill, A. V. S. ( 1998; ). Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat Med 4, 397–402.[CrossRef]
    [Google Scholar]
  46. Sinnathamby, G., Renukaradhya, G. J., Rajasekhar, M., Nayak, R. & Shaila, M. S. ( 2001; ). Recombinant hemagglutinin protein of rinderpest virus expressed in insect cells induces cytotoxic T-cell responses in cattle. Viral Immunol 14, 349–358.[CrossRef]
    [Google Scholar]
  47. Snapper, C. M. & Paul, W. E. ( 1987; ). Interferon-γ and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236, 944–947.[CrossRef]
    [Google Scholar]
  48. Song, M. K., Lee, S. W., Suh, Y. S., Lee, K. J. & Sung, Y. C. ( 2000; ). Enhancement of immunoglobulin G2a and cytotoxic T-lymphocyte responses by a booster immunization with recombinant hepatitis C virus E2 protein in E2 DNA-primed mice. J Virol 74, 2920–2925.[CrossRef]
    [Google Scholar]
  49. Sousa, A. O., Mazzaccaro, R. J., Russell, R. G., Lee, F. K., Turner, O. C., Hong, S., Van Kaer, L. & Bloom, B. R. ( 2000; ). Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice. Proc Natl Acad Sci U S A 97, 4204–4208.[CrossRef]
    [Google Scholar]
  50. Stenger, S., Mazzaccaro, R. J., Porcelli, S. A., Cho, S., Uyemura, K., Barnes, P. F., Rosat, J. P., Sette, A., Brenner, M. B. & other authors ( 1997; ). Differential effects of cytolytic T cell subsets on intracellular infection. Science 276, 1684–1687.[CrossRef]
    [Google Scholar]
  51. Tan, J. S., Canaday, D. H., Boom, W. H., Balaji, K. N., Schwander, S. K. & Rich, E. A. ( 1997; ). Human alveolar T lymphocyte responses to Mycobacterium tuberculosis antigens, role for CD4+ and CD8+ cytotoxic T cells and relative resistance of alveolar macrophages to lysis. J Immunol 159, 290–297.
    [Google Scholar]
  52. Vordermeier, H. M., Zhu, X. & Harris, D. P. ( 1997; ). Induction of CD8+ CTL recognizing mycobacterial peptides. Scand J Immunol 45, 521–526.[CrossRef]
    [Google Scholar]
  53. Xing, Z. ( 2001; ). The hunt for new tuberculosis vaccines: anti-TB immunity and rational design of vaccines. Curr Pharm Des 7, 1015–1037.[CrossRef]
    [Google Scholar]
  54. Zhou, X., Abdel Motal, U. M., Berg, L. & Jondal, M. ( 1992; ). In vivo priming of cytotoxic T lymphocyte responses in relation to in vitro up-regulation of major histocompatibility complex class I molecules by short synthetic peptides. Eur J Immunol 22, 3085–3090.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46928-0
Loading
/content/journal/jmm/10.1099/jmm.0.46928-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error