A catalase mutant is hypersensitive to oxidative stress and suffers increased DNA damage Free

Abstract

Catalase (KatA) is known to play an important role in oxidative stress resistance in many bacterial species and a homologue exists in , a member of the enterohepatic species. Here, a mutant was constructed by insertional mutagenesis and its oxidative stress phenotype was investigated. Catalase activity was readily detected [196 units (mg protein crude cell extract)] in the wild-type, whereas the mutant strain was deficient in, but not devoid of, activity. In contrast, strains lack detectable catalase activity and wild-type generally contains higher specific activity than . Wild-type cells tolerated 6 % O for growth, whilst the mutant could not survive at this oxygen level. Even at the optimal O level, the growth of the strain was severely inhibited, which is also in contrast to strains. Wild-type cells withstood exposure to 100 mM HO but the mutant cells were killed by the same treatment. Wild-type cells suffered no significant DNA damage by HO treatment (100 mM for 6 min), whilst the same treatment resulted in severe DNA fragmentation in the mutant. Thus KatA plays an important role as an antioxidant protein.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46891-0
2007-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/4/557.html?itemId=/content/journal/jmm/10.1099/jmm.0.46891-0&mimeType=html&fmt=ahah

References

  1. Day W. A. Jr, Sajecki J. L., Pitts T. M., Joens L. A. 2000; Role of catalase in Campylobacter jejuni intracellular survival. Infect Immun 68:6337–6345 [CrossRef]
    [Google Scholar]
  2. Fox J. G., Dewhirst F. E., Tully J. G., Paster B. J., Yan L., Taylor N. S., Collins M. J. Jr, Gorelick P. L., Ward J. M. 1994; Helicobacter hepaticus sp. nov., a microaerophilic bacterium isolated from livers and intestinal mucosal scrapings from mice. J Clin Microbiol 32:1238–1245
    [Google Scholar]
  3. Fox J. G., Li X., Yan L., Cahill R. J., Hurley R., Lewis R., Murphy J. C. 1996; Chronic proliferative hepatitis in A/JCr mice associated with persistent Helicobacter hepaticus infection: a model of helicobacter-induced carcinogenesis. Infect Immun 64:1548–1558
    [Google Scholar]
  4. Grant K. A., Park S. F. 1995; Molecular characterization of katA from Campylobacter jejuni and generation of a catalase-deficient mutant of Campylobacter coli by interspecific allelic exchange. Microbiology 141:1369–1376 [CrossRef]
    [Google Scholar]
  5. Harris A. G., Hazell S. L. 2003; Localisation of Helicobacter pylori catalase in both the periplasm and cytoplasm, and its dependence on the twin-arginine target protein, KapA, for activity. FEMS Microbiol Lett 229:283–289 [CrossRef]
    [Google Scholar]
  6. Harris A. G., Hinds F. E., Beckhouse A. G., Kolesnikow T., Hazell S. L. 2002; Resistance to hydrogen peroxide in Helicobacter pylori: role of catalase (KatA) and Fur, and functional analysis of a novel gene product designated ‘KatA-associated protein’, KapA (HP0874). Microbiology 148:3813–3825
    [Google Scholar]
  7. Harris A. G., Wilson J. E., Danon S. J., Dixon M. F., Donegan K., Hazell S. L. 2003; Catalase (KatA) and KatA-associated protein (KapA) are essential to persistent colonization in the Helicobacter pylori SS1 mouse model. Microbiology 149:665–672 [CrossRef]
    [Google Scholar]
  8. Hong T., Wang G., Maier R. J. 2006; Helicobacter hepaticus Dps protein plays an important role in protecting DNA from oxidative damage. Free Radic Res 40:597–605 [CrossRef]
    [Google Scholar]
  9. Imlay J. A. 2003; Pathways of oxidative damage. Annu Rev Microbiol 57:395–418 [CrossRef]
    [Google Scholar]
  10. Mehta N., Benoit S., Mysore J. V., Sousa R. S., Maier R. J. 2005; Helicobacter hepaticus hydrogenase mutants are deficient in hydrogen-supported amino acid uptake and in causing liver lesions in A/J mice. Infect Immun 73:5311–5318 [CrossRef]
    [Google Scholar]
  11. Odenbreit S., Wieland B., Haas R. 1996; Cloning and genetic characterization of Helicobacter pylori catalase and construction of a catalase-deficient mutant strain. J Bacteriol 178:6960–6967
    [Google Scholar]
  12. Olczak A. A., Olson J. W., Maier R. J. 2002; Oxidative-stress resistance mutants of Helicobacter pylori . J Bacteriol 184:3186–3193 [CrossRef]
    [Google Scholar]
  13. Sedgwick S. G., Smerdon S. J. 1999; The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci 24:311–316 [CrossRef]
    [Google Scholar]
  14. Seyler R. W. Jr, Olson J. W., Maier R. J. 2001; Superoxide dismutase-deficient mutants of Helicobacter pylori are hypersensitive to oxidative stress and defective in host colonization. Infect Immun 69:4034–4040 [CrossRef]
    [Google Scholar]
  15. Singh R., Leuratti C., Josyula S., Sipowicz M. A., Diwan B. A., Kasprzak K. S., Schut H. A., Marnett L. J., Anderson L. M., Shuker D. E. 2001; Lobe-specific increases in malondialdehyde DNA adduct formation in the livers of mice following infection with Helicobacter hepaticus . Carcinogenesis 22:1281–1287 [CrossRef]
    [Google Scholar]
  16. Sipowicz M. A., Chomarat P., Diwan B. A., Anver M. A., Awasthi Y. C., Ward J. M., Rice J. M., Kasprzak K. S., Wild C. P., Anderson L. M. 1997; Increased oxidative DNA damage and hepatocyte overexpression of specific cytochrome P450 isoforms in hepatitis of mice infected with Helicobacter hepaticus . Am J Pathol 151:933–941
    [Google Scholar]
  17. Solnick J. V., Schauer D. B. 2001; Emergence of diverse Helicobacter species in the pathogenesis of gastric and enterohepatic diseases. Clin Microbiol Rev 14:59–97 [CrossRef]
    [Google Scholar]
  18. Suerbaum S., Josenhans C., Sterzenbach T., Drescher B., Brandt P., Bell M., Droge M., Fartmann B., Fischer H. P. other authors 2003; The complete genome sequence of the carcinogenic bacterium Helicobacter hepaticus . Proc Natl Acad Sci U S A 100:7901–7906 [CrossRef]
    [Google Scholar]
  19. Valko M., Morris H., Cronin M. T. 2005; Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208 [CrossRef]
    [Google Scholar]
  20. Wang G., Maier R. J. 2004; An NADPH quinone reductase of Helicobacter pylori plays an important role in oxidative stress resistance and host colonization. Infect Immun 72:1391–1396 [CrossRef]
    [Google Scholar]
  21. Wang Y., Taylor D. E. 1990; Chloramphenicol resistance in Campylobacter coli : nucleotide sequence, expression, and cloning vector construction. Gene 94:23–28 [CrossRef]
    [Google Scholar]
  22. Wang G., Conover R. C., Benoit S., Olczak A. A., Olson J. W., Johnson M. K., Maier R. J. 2004; Role of a bacterial organic hydroperoxide detoxification system in preventing catalase inactivation. J Biol Chem 279:51908–51914 [CrossRef]
    [Google Scholar]
  23. Young V. B., Knox K. A., Pratt J. S., Cortez J. S., Mansfield L. S., Rogers A. B., Fox J. G., Schauer D. B. 2004; In vitro and in vivo characterization of Helicobacter hepaticus cytolethal distending toxin mutants. Infect Immun 72:2521–2527 [CrossRef]
    [Google Scholar]
  24. Zirkle R. E., Krieg N. R. 1996; Development of a method based on alkaline gel electrophoresis for estimation of oxidative damage to DNA in Escherichia coli . J Appl Bacteriol 81:133–138 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46891-0
Loading
/content/journal/jmm/10.1099/jmm.0.46891-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed