1887

Abstract

Catalase (KatA) is known to play an important role in oxidative stress resistance in many bacterial species and a homologue exists in , a member of the enterohepatic species. Here, a mutant was constructed by insertional mutagenesis and its oxidative stress phenotype was investigated. Catalase activity was readily detected [196 units (mg protein crude cell extract)] in the wild-type, whereas the mutant strain was deficient in, but not devoid of, activity. In contrast, strains lack detectable catalase activity and wild-type generally contains higher specific activity than . Wild-type cells tolerated 6 % O for growth, whilst the mutant could not survive at this oxygen level. Even at the optimal O level, the growth of the strain was severely inhibited, which is also in contrast to strains. Wild-type cells withstood exposure to 100 mM HO but the mutant cells were killed by the same treatment. Wild-type cells suffered no significant DNA damage by HO treatment (100 mM for 6 min), whilst the same treatment resulted in severe DNA fragmentation in the mutant. Thus KatA plays an important role as an antioxidant protein.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46891-0
2007-04-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/4/557.html?itemId=/content/journal/jmm/10.1099/jmm.0.46891-0&mimeType=html&fmt=ahah

References

  1. Day W. A. Jr, Sajecki J. L., Pitts T. M., Joens L. A. 2000; Role of catalase in Campylobacter jejuni intracellular survival. Infect Immun 68:6337–6345 [CrossRef]
    [Google Scholar]
  2. Fox J. G., Dewhirst F. E., Tully J. G., Paster B. J., Yan L., Taylor N. S., Collins M. J. Jr, Gorelick P. L., Ward J. M. 1994; Helicobacter hepaticus sp. nov., a microaerophilic bacterium isolated from livers and intestinal mucosal scrapings from mice. J Clin Microbiol 32:1238–1245
    [Google Scholar]
  3. Fox J. G., Li X., Yan L., Cahill R. J., Hurley R., Lewis R., Murphy J. C. 1996; Chronic proliferative hepatitis in A/JCr mice associated with persistent Helicobacter hepaticus infection: a model of helicobacter-induced carcinogenesis. Infect Immun 64:1548–1558
    [Google Scholar]
  4. Grant K. A., Park S. F. 1995; Molecular characterization of katA from Campylobacter jejuni and generation of a catalase-deficient mutant of Campylobacter coli by interspecific allelic exchange. Microbiology 141:1369–1376 [CrossRef]
    [Google Scholar]
  5. Harris A. G., Hazell S. L. 2003; Localisation of Helicobacter pylori catalase in both the periplasm and cytoplasm, and its dependence on the twin-arginine target protein, KapA, for activity. FEMS Microbiol Lett 229:283–289 [CrossRef]
    [Google Scholar]
  6. Harris A. G., Hinds F. E., Beckhouse A. G., Kolesnikow T., Hazell S. L. 2002; Resistance to hydrogen peroxide in Helicobacter pylori: role of catalase (KatA) and Fur, and functional analysis of a novel gene product designated ‘KatA-associated protein’, KapA (HP0874). Microbiology 148:3813–3825
    [Google Scholar]
  7. Harris A. G., Wilson J. E., Danon S. J., Dixon M. F., Donegan K., Hazell S. L. 2003; Catalase (KatA) and KatA-associated protein (KapA) are essential to persistent colonization in the Helicobacter pylori SS1 mouse model. Microbiology 149:665–672 [CrossRef]
    [Google Scholar]
  8. Hong T., Wang G., Maier R. J. 2006; Helicobacter hepaticus Dps protein plays an important role in protecting DNA from oxidative damage. Free Radic Res 40:597–605 [CrossRef]
    [Google Scholar]
  9. Imlay J. A. 2003; Pathways of oxidative damage. Annu Rev Microbiol 57:395–418 [CrossRef]
    [Google Scholar]
  10. Mehta N., Benoit S., Mysore J. V., Sousa R. S., Maier R. J. 2005; Helicobacter hepaticus hydrogenase mutants are deficient in hydrogen-supported amino acid uptake and in causing liver lesions in A/J mice. Infect Immun 73:5311–5318 [CrossRef]
    [Google Scholar]
  11. Odenbreit S., Wieland B., Haas R. 1996; Cloning and genetic characterization of Helicobacter pylori catalase and construction of a catalase-deficient mutant strain. J Bacteriol 178:6960–6967
    [Google Scholar]
  12. Olczak A. A., Olson J. W., Maier R. J. 2002; Oxidative-stress resistance mutants of Helicobacter pylori . J Bacteriol 184:3186–3193 [CrossRef]
    [Google Scholar]
  13. Sedgwick S. G., Smerdon S. J. 1999; The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci 24:311–316 [CrossRef]
    [Google Scholar]
  14. Seyler R. W. Jr, Olson J. W., Maier R. J. 2001; Superoxide dismutase-deficient mutants of Helicobacter pylori are hypersensitive to oxidative stress and defective in host colonization. Infect Immun 69:4034–4040 [CrossRef]
    [Google Scholar]
  15. Singh R., Leuratti C., Josyula S., Sipowicz M. A., Diwan B. A., Kasprzak K. S., Schut H. A., Marnett L. J., Anderson L. M., Shuker D. E. 2001; Lobe-specific increases in malondialdehyde DNA adduct formation in the livers of mice following infection with Helicobacter hepaticus . Carcinogenesis 22:1281–1287 [CrossRef]
    [Google Scholar]
  16. Sipowicz M. A., Chomarat P., Diwan B. A., Anver M. A., Awasthi Y. C., Ward J. M., Rice J. M., Kasprzak K. S., Wild C. P., Anderson L. M. 1997; Increased oxidative DNA damage and hepatocyte overexpression of specific cytochrome P450 isoforms in hepatitis of mice infected with Helicobacter hepaticus . Am J Pathol 151:933–941
    [Google Scholar]
  17. Solnick J. V., Schauer D. B. 2001; Emergence of diverse Helicobacter species in the pathogenesis of gastric and enterohepatic diseases. Clin Microbiol Rev 14:59–97 [CrossRef]
    [Google Scholar]
  18. Suerbaum S., Josenhans C., Sterzenbach T., Drescher B., Brandt P., Bell M., Droge M., Fartmann B., Fischer H. P. other authors 2003; The complete genome sequence of the carcinogenic bacterium Helicobacter hepaticus . Proc Natl Acad Sci U S A 100:7901–7906 [CrossRef]
    [Google Scholar]
  19. Valko M., Morris H., Cronin M. T. 2005; Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208 [CrossRef]
    [Google Scholar]
  20. Wang G., Maier R. J. 2004; An NADPH quinone reductase of Helicobacter pylori plays an important role in oxidative stress resistance and host colonization. Infect Immun 72:1391–1396 [CrossRef]
    [Google Scholar]
  21. Wang Y., Taylor D. E. 1990; Chloramphenicol resistance in Campylobacter coli : nucleotide sequence, expression, and cloning vector construction. Gene 94:23–28 [CrossRef]
    [Google Scholar]
  22. Wang G., Conover R. C., Benoit S., Olczak A. A., Olson J. W., Johnson M. K., Maier R. J. 2004; Role of a bacterial organic hydroperoxide detoxification system in preventing catalase inactivation. J Biol Chem 279:51908–51914 [CrossRef]
    [Google Scholar]
  23. Young V. B., Knox K. A., Pratt J. S., Cortez J. S., Mansfield L. S., Rogers A. B., Fox J. G., Schauer D. B. 2004; In vitro and in vivo characterization of Helicobacter hepaticus cytolethal distending toxin mutants. Infect Immun 72:2521–2527 [CrossRef]
    [Google Scholar]
  24. Zirkle R. E., Krieg N. R. 1996; Development of a method based on alkaline gel electrophoresis for estimation of oxidative damage to DNA in Escherichia coli . J Appl Bacteriol 81:133–138 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46891-0
Loading
/content/journal/jmm/10.1099/jmm.0.46891-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error