1887

Abstract

The genetic determinants involved in reduced susceptibility to third-generation cephalosporins and aztreonam were identified in ten canine isolates associated with opportunistic infections in three veterinary hospitals in Brisbane, Australia. All isolates were evaluated by a combination of phenotypic (broth microdilution and disc susceptibility, modified disc diffusion and IEF) and genotypic (PFGE, plasmid analysis, Southern blot hybridization, bacterial conjugation, PCR and sequencing) methods to investigate genetic relatedness and to identify plasmid-mediated resistance genes, in particular -lactamase genes responsible for extended-spectrum cephalosporin resistance. The ten canine isolates were genotypically diverse based on PFGE and belonged to either or on the basis of 16S rRNA gene sequence analysis. Plasmid profiles were also diverse. Nine isolates contained a transmissible -carrying plasmid (∼140 kb) that also conferred resistance to chloramphenicol, gentamicin, spectinomycin, tetracycline, trimethoprim and sulfonamides. In all plasmid-mediated extended-spectrum -lactamase (ESBL)-producing isolates including transconjugants, was shown to reside in a ∼6.5 kb plasmid fragment. The remaining isolate that was not an ESBL producer possessed an AmpC -lactamase gene ( ) on a ∼93 kb transmissible plasmid. This plasmid did not contain any other antimicrobial resistance genes. Additional plasmid-mediated -lactamases identified in some isolates included and . This is the first report of canine isolates containing transmissible plasmid-mediated and resistance genes. Therefore, isolated from opportunistic infections in dogs may be an important reservoir of plasmid-mediated resistance genes, which could potentially be spread to other members of the .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46888-0
2007-03-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/3/426.html?itemId=/content/journal/jmm/10.1099/jmm.0.46888-0&mimeType=html&fmt=ahah

References

  1. Bell, J. M., Turnidge, J. D., Jones, R. N. & the SENTRY Asia-Pacific Participants ( 2003; ). Prevalence of extended-spectrum β-lactamase-producing Enterobacter cloacae in the Asia-Pacific region: results from the SENTRY Antimicrobial Surveillance Program, 1998 to 2001. Antimicrob Agents Chemother 47, 3989–3993.[CrossRef]
    [Google Scholar]
  2. Bradford, P. A. ( 2001; ). Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14, 933–951.[CrossRef]
    [Google Scholar]
  3. Carattoli, A., Lovari, S., Franco, A., Cordaro, G., Di Matteo, P. & Battisti, A. ( 2005; ). Extended-spectrum β-lactamases in Escherichia coli isolated from dogs and cats in Rome, Italy, from 2001 to 2003. Antimicrob Agents Chemother 49, 833–835.[CrossRef]
    [Google Scholar]
  4. Chia, J.-H., Chu, C., Su, L.-H., Chiu, C.-H., Kuo, A.-J., Sun, C.-F. & Wu, T.-L. ( 2005; ). Development of a multiplex PCR and SHV melting-curve mutation detection system for detection of some SHV and CTX-M β-lactamases of Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae in Taiwan. J Clin Microbiol 43, 4486–4491.[CrossRef]
    [Google Scholar]
  5. Corkill, J. E., Anson, J. J. & Hart, C. A. ( 2005; ). High prevalence of the plasmid-mediated quinolone resistance determinant qnrA in multidrug-resistant Enterobacteriaceae from blood cultures in Liverpool, UK. J Antimicrob Chemother 56, 1115–1117.[CrossRef]
    [Google Scholar]
  6. Fernández-Baca, V., Ballesteros, F., Hervás, J. A., Villalón, P., Domínguez, M. A., Benedí., V. J. & Albertí, S. ( 2001; ). Molecular epidemiological typing of Enterobacter cloacae isolates from a neonatal intensive care unit: three-year prospective study. J Hosp Infect 49, 173–182.[CrossRef]
    [Google Scholar]
  7. Gottlieb, T. & Wolfson, C. ( 2000; ). Comparison of the MICs of cefepime for extended-spectrum β-lactamase-producing and non-extended-spectrum β-lactamase-producing strains of Enterobacter cloacae. J Antimicrob Chemother 46, 330–331.[CrossRef]
    [Google Scholar]
  8. Hanson, N. D. & Sanders, C. C. ( 1999; ). Regulation of inducible AmpC β-lactamase expression among Enterobacteriaceae. Curr Pharm Des 5, 881–894.
    [Google Scholar]
  9. Hanson, N. D., Moland, E. S., Hossain, A., Neville, S. A., Gosbell, I. B. & Thomson, K. S. ( 2002; ). Unusual Salmonella enterica serotype Typhimurium isolate producing CMY-7, SHV-9 and OXA-30 β-lactamases. J Antimicrob Chemother 49, 1011–1014.[CrossRef]
    [Google Scholar]
  10. Ho, P. L., Shek, R. H. L., Chow, K. H., Duan, R. S., Mak, G. C., Lai, E. L., Yam, W. C., Tsang, K. W. & Lai, W. M. ( 2005; ). Detection and characterization of extended-spectrum β-lactamases among bloodstream isolates of Enterobacter spp. in Hong Kong, 2000–2002. J Antimicrob Chemother 55, 326–332.[CrossRef]
    [Google Scholar]
  11. Hoffmann, H., Stindl, S., Ludwig, W., Stumpf, A., Mehlen, A., Monget, D., Pierard, D., Ziesing, S., Heesemann, J. & other authors ( 2005; ). Enterobacter hormaechei subsp. oharae subsp. nov., E. hormaechei subsp. hormaechei comb. nov., and E. hormaechei subsp. steigerwaltii subsp. nov., three new subspecies of clinical importance. J Clin Microbiol 43, 3297–3303.[CrossRef]
    [Google Scholar]
  12. Howard, C., van Daal, A., Kelly, G., Schooneveldt, J., Nimmo, G. & Giffard, P. M. ( 2002; ). Identification and minisequencing-based discrimination of SHV β-lactamases in nosocomial infection-associated Klebsiella pneumoniae in Brisbane, Australia. Antimicrob Agents Chemother 46, 659–664.[CrossRef]
    [Google Scholar]
  13. Kim, J., Lim, Y.-M., Rheem, I., Lee, Y., Lee, J.-C., Seol, S.-Y., Lee, Y.-C. & Cho, D.-T. ( 2005; ). CTX-M and SHV-12 β-lactamases are the most common extended-spectrum enzymes in clinical isolates of Escherichia coli and Klebsiella pneumoniae collected from 3 university hospitals within Korea. FEMS Microbiol Lett 245, 93–98.[CrossRef]
    [Google Scholar]
  14. Lee, S. H., Kim, J. Y., Shin, S. H., An, Y. J., Choi, Y. W., Jung, Y. C., Jung, H. I., Sohn, E. S., Jeong, S. H. & Lee, K. J. ( 2003; ). Dissemination of SHV-12 and characterization of new AmpC-type β-lactamase genes among clinical isolates of Enterobacter species in Korea. J Clin Microbiol 41, 2477–2482.[CrossRef]
    [Google Scholar]
  15. Levison, M. E., Mailapur, Y. V., Pradhan, S. K., Jacoby, G. A., Adams, P., Emery, C. L., May, P. L. & Pitsakis, P. G. ( 2002; ). Regional occurrence of plasmid-mediated SHV-7, an extended-spectrum β-lactamase, in Enterobacter cloacae in Philadelphia Teaching Hospitals. Clin Infect Dis 35, 1551–1554.[CrossRef]
    [Google Scholar]
  16. Liu, C.-P., Wang, N.-Y., Lee, C.-M., Weng, L.-C., Tseng, H.-K., Liu, C.-W., Chiang, C.-S. & Huang, F.-Y. ( 2004; ). Nosocomial and community-acquired Enterobacter cloacae bloodstream infection: risk factors for and prevalence of SHV-12 in multiresistant isolates in a medical centre. J Hosp Infect 58, 63–77.[CrossRef]
    [Google Scholar]
  17. Ma, L., Chang, F.-Y., Fung, C.-P., Chen, T.-L., Lin, J.-C., Lu, P.-L., Huang, L.-Y., Chang, J.-C. & Siu, L. K. ( 2005; ). Variety of TEM-, SHV-, and CTX-M-type β-lactamases present in recent clinical isolates of Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae from Taiwan. Microb Drug Resist 11, 31–39.[CrossRef]
    [Google Scholar]
  18. Milinovich, G. J., Trott, D. J., Burrell, P. C., van Eps, A. W., Thoefner, M. B., Blackall, L. L., Al Jassim, R. A. M., Morton, J. M. & Pollitt, C. C. ( 2006; ). Changes in equine hindgut bacterial populations during oligofructose-induced laminitis. Environ Microbiol 8, 885–898.[CrossRef]
    [Google Scholar]
  19. NCCLS ( 2002; ). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals: Approved Standard, 2nd edn. Approved Standard M31-A2. Wayne, PA: National Committee for Clinical Laboratory Standards.
  20. Pai, H., Hong, J. Y., Byeon, J.-H., Kim, Y.-K. & Lee, H.-J. ( 2004; ). High prevalence of extended-spectrum β-lactamase-producing strains among blood isolates of Enterobacter spp. collected in a tertiary hospital during an 8-year period and their antimicrobial susceptibility patterns. Antimicrob Agents Chemother 48, 3159–3161.[CrossRef]
    [Google Scholar]
  21. Park, Y.-J., Park, S. Y., Oh, E.-J., Park, J.-J., Lee, K.-Y., Woo, G.-J. & Lee, K. ( 2005; ). Occurrence of extended-spectrum β-lactamases among chromosomal AmpC-producing Enterobacter cloacae, Citrobacter freundii, and Serratia marcescens in Korea and investigation of screening criteria. Diagn Microbiol Infect Dis 51, 265–269.[CrossRef]
    [Google Scholar]
  22. Paterson, D. L., Hujer, K. M., Hujer, A. M., Yeiser, B., Bonomo, M. D., Rice, L. B., Bonomo, R. A. & the International Klebsiella Study Group ( 2003; ). Extended-spectrum β-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type β-lactamases. Antimicrob Agents Chemother 47, 3554–3560.[CrossRef]
    [Google Scholar]
  23. Pérez-Pérez, F. J. & Hanson, N. D. ( 2002; ). Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40, 2153–2162.[CrossRef]
    [Google Scholar]
  24. Pitout, J. D. D., Reisbig, M. D., Venter, E. C., Church, D. L. & Hanson, N. D. ( 2003; ). Modification of the double-disk test for detection of Enterobacteriaceae producing extended-spectrum and AmpC β-lactamases. J Clin Microbiol 41, 3933–3935.[CrossRef]
    [Google Scholar]
  25. Ramphal, R. & Ambrose, P. G. ( 2006; ). Extended-spectrum β-lactamases and clinical outcomes: current data. Clin Infect Dis 42 (Suppl. 4), S164–S172.[CrossRef]
    [Google Scholar]
  26. Schlesinger, J., Navon-Venezia, S., Chmelnitsky, I., Hammer-Münz, O., Leavitt, A., Gold, H. S., Schwaber, M. J. & Carmeli, Y. ( 2005; ). Extended-spectrum beta-lactamases among Enterobacter isolates obtained in Tel Aviv, Israel. Antimicrob Agents Chemother 49, 1150–1156.[CrossRef]
    [Google Scholar]
  27. Seeberg, A. H., Tolxdorff-Neutzling, R. M. & Wiedemann, B. ( 1983; ). Chromosomal β-lactamases of Enterobacter cloacae are responsible for resistance to third-generation cephalosporins. Antimicrob Agents Chemother 23, 918–925.[CrossRef]
    [Google Scholar]
  28. Sidjabat, H. E., Townsend, K. M., Hanson, N. D., Bell, J. M., Stokes, H. W., Gobius, K. S., Moss, S. M. & Trott, D. J. ( 2006a; ). Identification of bla CMY-7 and associated plasmid-mediated resistance genes in multidrug-resistant Escherichia coli isolated from dogs at a veterinary teaching hospital in Australia. J Antimicrob Chemother 57, 840–848.[CrossRef]
    [Google Scholar]
  29. Sidjabat, H. E., Townsend, K. M., Lorentzen, M., Gobius, K. S., Fegan, N., Chin, J. J.-C., Bettelheim, K. A., Hanson, N. D., Bensink, J. C. & Trott, D. J. ( 2006b; ). Emergence and spread of two distinct clonal groups of multidrug-resistant Escherichia coli in a veterinary teaching hospital in Australia. J Med Microbiol 55, 1125–1134.[CrossRef]
    [Google Scholar]
  30. Su, L.-H., Chen, H.-L., Chia, J.-H., Liu, S.-Y., Chu, C., Wu, T.-L. & Chiu, C.-H. ( 2006; ). Distribution of a transposon-like element carrying bla CMY-2 among Salmonella and other Enterobacteriaceae. J Antimicrob Chemother 57, 424–429.[CrossRef]
    [Google Scholar]
  31. Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P. A., Murray, B. E., Persing, D. H. & Swaminathan, B. ( 1995; ). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33, 2233–2239.
    [Google Scholar]
  32. Teshager, T., Dominguez, L., Moreno, M. A., Saenz, Y., Torres, C. & Cardenosa, S. ( 2000; ). Isolation of an SHV-12 β-lactamase-producing Escherichia coli strain from a dog with recurrent urinary tract infections. Antimicrob Agents Chemother 44, 3483–3484.[CrossRef]
    [Google Scholar]
  33. Thomson, K. S., Sanders, C. C. & Moland, E. S. ( 1999; ). Use of microdilution panels with and without β-lactamase inhibitors as a phenotypic test for β-lactamase production among Escherichia coli, Klebsiella spp., Enterobacter spp., Citrobacter freundii, and Serratia marcescens. Antimicrob Agents Chemother 43, 1393–1400.
    [Google Scholar]
  34. Tzelepi, E., Giakkoupi, P., Sofianou, D., Loukova, V., Kemeroglou, A. & Tsakris, A. ( 2000; ). Detection of extended-spectrum β-lactamases in clinical isolates of Enterobacter cloacae and Enterobacter aerogenes. J Clin Microbiol 38, 542–546.
    [Google Scholar]
  35. Vahaboglu, H., Ozturk, R., Akbal, H., Saribas, S., Tansel, O. & Coskunkan, F. ( 1998; ). Practical approach for detection and identification of OXA-10-derived ceftazidime-hydrolyzing extended-spectrum β-lactamases. J Clin Microbiol 36, 827–829.
    [Google Scholar]
  36. Warren, A., Townsend, K. M., King, T., Moss, S. M., O'Boyle, D. & Trott, D. J. ( 2001; ). Multi-drug resistant Escherichia coli with extended-spectrum β-lactamase activity and fluoroquinolone resistance isolated from clinical infections in dogs. Aust Vet J 79, 621–623.[CrossRef]
    [Google Scholar]
  37. Weese, J. S., Dick, H., Willey, B. M., McGeer, A., Kreiswirth, B. N., Innis, B. & Low, D. E. ( 2006; ). Suspected transmission of methicillin-resistant Staphylococcus aureus between domestic pets and humans in veterinary clinics and in the household. Vet Microbiol 115, 148–155.[CrossRef]
    [Google Scholar]
  38. Yan, J.-J., Wu, S.-M., Tsai, S.-H., Wu, J.-J. & Su, I.-J. ( 2000; ). Prevalence of SHV-12 among clinical isolates of Klebsiella pneumoniae producing extended-spectrum β-lactamases and identification of a novel AmpC enzyme (CMY-8) in Southern Taiwan. Antimicrob Agents Chemother 44, 1438–1442.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46888-0
Loading
/content/journal/jmm/10.1099/jmm.0.46888-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error