1887

Abstract

, a pathogen associated with oral and extra-oral infections, requires iron to grow under limiting conditions. Although incapable of producing siderophores, this pathogen could acquire iron by direct interaction with compounds such as haemin, haemoglobin, lactoferrin and transferrin. In this work the ability of different strains to bind and use different iron sources was tested. None of the strains tested used haemoglobin, lactoferrin or transferrin as sole sources of iron. However, all of them used FeCl and haemin as iron sources under chelated conditions. Dot-blot binding assays showed that all strains bind lactoferrin, haemoglobin and haemin, but not transferrin. Insertion inactivation of , which encodes a predicted cell-envelope protein related to haemin-storage proteins produced by other pathogens, reduced haemin and Congo red binding drastically without affecting haemin utilization as an iron source under chelated conditions. Biofilm assays showed that all strains tested attached to and formed biofilms on plastic under iron-rich and iron-chelated conditions. However, scanning electron microscopy showed that smooth strains formed simpler biofilms than rough isolates. Furthermore, the incubation of rough cells in the presence of FeCl or haemin resulted in the formation of more aggregates and microcolonies compared with the fewer cell aggregates formed when cells were grown in the presence of the synthetic iron chelator dipyridyl. These cell responses to changes in extracellular iron concentrations may reflect those that this pathogen expresses under the conditions it encounters in the human oral cavity.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46844-0
2007-01-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/1/119.html?itemId=/content/journal/jmm/10.1099/jmm.0.46844-0&mimeType=html&fmt=ahah

References

  1. Actis, L. A., Potter, S. A. & Crosa, J. H. ( 1985; ). Iron-regulated outer membrane protein OM2 of Vibrio anguillarum is encoded by virulence plasmid pJM1. J Bacteriol 161, 736–742.
    [Google Scholar]
  2. Alugupalli, K. R., Kalfs, S., Ewardsson, S. & Naidu, A. S. ( 1995; ). Lactoferrin interaction with Actinobacillus actinomycetemcomitans. Oral Microbiol Immunol 10, 35–41.[CrossRef]
    [Google Scholar]
  3. Araujo, M. ( 2002; ). Localized juvenile periodontitis or localized aggressive periodontitis. J Mass Dent Soc 51, 14–18.
    [Google Scholar]
  4. Armitage, G. C. ( 1999; ). Development of a classification system for periodontal diseases and conditions. Ann Periodontol 4, 1–6.[CrossRef]
    [Google Scholar]
  5. Balashova, N. V., Crosby, J. A., Al Ghofaily, L. & Kachlany, S. C. ( 2006; ). Leukotoxin confers beta-hemolytic activity to Actinobacillus actinomycetemcomitans. Infect Immun 74, 2015–2021.[CrossRef]
    [Google Scholar]
  6. Banin, E., Vasil, M. L. & Greenberg, E. P. ( 2005; ). Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A 102, 11076–11081.[CrossRef]
    [Google Scholar]
  7. Berlutti, F., Ajello, M., Bosso, P., Morea, C., Petrucca, A., Antonini, G. & Valenti, P. ( 2004; ). Both lactoferrin and iron influence aggregation and biofilm formation in Streptococcus mutans. Biometals 17, 271–278.[CrossRef]
    [Google Scholar]
  8. Bradford, M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein–dye binding. Anal Biochem 72, 249–252.
    [Google Scholar]
  9. Fine, D. H. & Furgang, D. ( 2002; ). Lactoferrin iron levels affect attachment of Actinobacillus actinomycetemcomitans to buccal epithelial cells. J Periodontol 73, 616–623.[CrossRef]
    [Google Scholar]
  10. Fine, D. H., Furgang, D., Schreiner, H. C., Goncharoff, P., Charlesworth, J., Ghazwan, G., Fitzgerald-Bocarsly, P. & Figurski, D. H. ( 1999; ). Phenotypic variation in Actinobacillus actinomycetemcomitans during laboratory growth: implications for virulence. Microbiology 145, 1335–1347.[CrossRef]
    [Google Scholar]
  11. Fine, D. H., Velliyagounder, K., Furgang, D. & Kaplan, J. B. ( 2005; ). The Actinobacillus actinomycetemcomitans autotransporter adhesin Aae exhibits specificity for buccal epithelial cells from humans and Old World primates. Infect Immun 73, 1947–1953.[CrossRef]
    [Google Scholar]
  12. Fong, K. P., Gao, L. & Demuth, D. R. ( 2003; ). luxS and arcB control aerobic growth of Actinobacillus actinomycetemcomitans under iron limitation. Infect Immun 71, 298–308.[CrossRef]
    [Google Scholar]
  13. Fouz, B., Mazoy, R., Lemos, M. L., del Olmo, M. J. & Amaro, C. ( 1996; ). Utilization of hemin and hemoglobin by Vibrio vulnificus biotype 2. Appl Environ Microbiol 62, 2806–2810.
    [Google Scholar]
  14. Goncharoff, P., Yip, J. K., Wang, H., Schreiner, H. C., Pai, J. A., Furgang, D., Stevens, R. H., Figurski, D. H. & Fine, D. H. ( 1993; ). Conjugal transfer of broad-host-range incompatibility group P and Q plasmids from Escherichia coli to Actinobacillus actinomycetemcomitans. Infect Immun 61, 3544–3547.
    [Google Scholar]
  15. Graber, K. R., Smoot, L. M. & Actis, L. A. ( 1998; ). Expression of iron binding proteins and hemin binding activity in the dental pathogen Actinobacillus actinomycetemcomitans. FEMS Microbiol Lett 163, 135–142.[CrossRef]
    [Google Scholar]
  16. Grenier, D., Leduc, A. & Myrand, D. ( 1997; ). Interaction between Actinobacillus actinomycetemcomitans lipopolysaccharides and human hemoglobin. FEMS Microbiol Lett 151, 77–81.[CrossRef]
    [Google Scholar]
  17. Haraszthy, V. I., Lally, E. T., Haraszthy, G. G. & Zambon, J. J. ( 2002; ). Molecular cloning of the fur gene from Actinobacillus actinomycetemcomitans. Infect Immun 70, 3170–3179.[CrossRef]
    [Google Scholar]
  18. Hayashida, H., Poulsen, K. & Kilian, M. ( 2002; ). Differences in iron acquisition from human haemoglobin among strains of Actinobacillus actinomycetemcomitans. Microbiology 148, 3993–4001.
    [Google Scholar]
  19. Hinnebusch, B. J., Perry, R. D. & Schwan, T. G. ( 1996; ). Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273, 367–370.[CrossRef]
    [Google Scholar]
  20. Johnson, M., Cockayne, A., Williams, P. H. & Morrissey, J. A. ( 2005; ). Iron-responsive regulation of biofilm formation in Staphylococcus aureus involves Fur-dependent and Fur-independent mechanisms. J Bacteriol 187, 8211–8215.[CrossRef]
    [Google Scholar]
  21. Kachlany, S. C., Planet, P. J., Bhattacharjee, M. K., Kollia, E., DeSalle, R., Fine, D. H. & Figurski, D. H. ( 2000; ). Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in bacteria and archaea. J Bacteriol 182, 6169–6176.[CrossRef]
    [Google Scholar]
  22. Kalmar, J. R. & Arnold, R. R. ( 1988; ). Killing of Actinobacillus actinomycetemcomitans by human lactoferrin. Infect Immun 56, 2552–2557.
    [Google Scholar]
  23. Lillard, J. W., Jr, Fetherston, J. D., Pedersen, L., Pendrak, M. L. & Perry, R. D. ( 1997; ). Sequence and genetic analysis of the hemin storage (hms) system of Yersinia pestis. Gene 193, 13–21.[CrossRef]
    [Google Scholar]
  24. Meyer, D. D. & Fives-Taylor, P. M. ( 1997; ). The role of Actinobacillus actinomycetemcomitans in the pathogenesis of periodontal disease. Trends Microbiol 6, 224–228.
    [Google Scholar]
  25. Mukherjee, S. ( 1985; ). The role of crevicular fluid iron in periodontal disease. J Periodontol 56, 22–27.[CrossRef]
    [Google Scholar]
  26. Mukherjee, S., Murphy, R. A. & Wawszkiewcz, E. J. ( 1988; ). Effect of hemoglobin and of ferric ammonium citrate on the virulence of periodontopathic bacteria. Oral Microbiol Immunol 3, 192–195.[CrossRef]
    [Google Scholar]
  27. Pendrak, M. L. & Perry, R. D. ( 1993; ). Proteins essential for expression of the Hms+ phenotype of Yersinia pestis. Mol Microbiol 8, 857–864.[CrossRef]
    [Google Scholar]
  28. Perry, R. D., Pendrak, M. L. & Schuetze, P. ( 1990; ). Identification and cloning of a hemin storage locus involved in the pigmentation phenotype of Yersinia pestis. J Bacteriol 172, 5929–5937.
    [Google Scholar]
  29. Perry, R. D., Lucier, T. S., Sikkema, D. J. & Brubaker, R. R. ( 1993; ). Storage reservoirs of hemin and inorganic iron in Yersinia pestis. Infect Immun 61, 32–39.
    [Google Scholar]
  30. Rhodes, E. R., Tomaras, A. P., McGillivary, G., Connerly, P. L. & Actis, L. A. ( 2005; ). Genetic and functional analyses of the Actinobacillus actinomycetemcomitans AfeABCD siderophore-independent iron acquisition system. Infect Immun 73, 3758–3763.[CrossRef]
    [Google Scholar]
  31. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  32. Schreiner, H. C., Sinatra, K., Kaplan, J. B., Furgang, D., Kachlany, S. C., Planet, P. J., Perez, B. A., Figurski, D. H. & Fine, D. H. ( 2003; ). Tight-adherence genes of Actinobacillus actinomycetemcomitans are required for virulence in a rat model. Proc Natl Acad Sci U S A 100, 7295–7300.[CrossRef]
    [Google Scholar]
  33. Singh, P. K. ( 2004; ). Iron sequestration by human lactoferrin stimulates P. aeruginosa surface motility and blocks biofilm formation. Biometals 17, 267–270.[CrossRef]
    [Google Scholar]
  34. Slots, J. & Genco, R. J. ( 1984; ). Black-pigmented Bacteroides species, Capnocytophaga species, and Actinobacillus actinomycetemcomitans in human periodontal disease: virulence factors in colonization, survival, and tissue destruction. J Dent Res 63, 412–421.[CrossRef]
    [Google Scholar]
  35. Spitznagel, J., Jr, Kraig, E. & Kolodrubetz, D. ( 1995; ). The regulation of leukotoxin production in Actinobacillus actinomycetemcomitans strain JP2. Adv Dent Res 9, 48–54.[CrossRef]
    [Google Scholar]
  36. Stugard, C. E., Daskaleros, P. A. & Payne, S. M. ( 1989; ). A 101-kilodalton heme-binding protein associated with Congo red binding and virulence of Shigella flexneri and enteroinvasive Escherichia coli strains. Infect Immun 57, 3534–3539.
    [Google Scholar]
  37. Tomaras, A. P., Dorsey, C. W., Edelmann, R. E. & Actis, L. A. ( 2003; ). Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology 149, 3473–3484.[CrossRef]
    [Google Scholar]
  38. Wandersman, C. & Delepelaire, P. ( 2004; ). Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58, 611–647.[CrossRef]
    [Google Scholar]
  39. Willemsen, P. T. J., Vulto, I., Boxem, M. & De Graaf, J. ( 1997; ). Characterization of a periplasmic protein involved in iron utilization of Actinobacillus actinomycetemcomitans. J Bacteriol 179, 4949–4952.
    [Google Scholar]
  40. Winston, J. L., Chen, C.-K., Neiders, M. E. & Dyer, D. W. ( 1993; ). Membrane protein expression by Actinobacillus actinomycetemcomitans in response to iron availability. J Dent Res 72, 1366–1373.[CrossRef]
    [Google Scholar]
  41. Zambon, J. J. ( 1985; ). Actinobacillus actinomycetemcomitans in human periodontal disease. J Clin Periodontol 12, 1–20.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46844-0
Loading
/content/journal/jmm/10.1099/jmm.0.46844-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error