1887

Abstract

The purpose of this study was to verify whether the presence of any of the PAI genes or segments – , promoter, , , , , and the left end of the II (LEC) region – would be a useful marker for the risk of peptic ulcer disease development. DNA extracted from positive urease tests of 150 peptic ulcer patients and 65 dyspeptic controls was analysed by PCR. Duodenal ulcers were present in 110, gastric ulcers in 23 and both gastric and duodenal ulcers in 17 patients. A significant association ( <0.001) was found between a conserved PAI and peptic ulcer disease (34 %). The positivity of the gene varied according to the region of the gene that was amplified. The region near to the promoter was present in almost all of the isolates (97.2 %). The segment from nt 1764 to 2083 and the extreme right end were frequently deleted in the isolates from the controls ( <0.01). The positivity of the promoter region of and , , and LEC showed a significant difference between the isolates from peptic ulcer patients and from the controls ( <0.01). Patients usually had moderate gastritis; however, the intensity of the active inflammation was higher in the peptic ulcer group ( <0.001). , , LEC and the right end terminus of the -positive isolates were associated with a 27-fold, 8-fold, 4-fold and 4-fold risk of peptic ulcer disease, respectively, and may be useful markers to identify individuals at higher risk of peptic ulcer disease development in Brazil.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46824-0
2007-01-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/1/9.html?itemId=/content/journal/jmm/10.1099/jmm.0.46824-0&mimeType=html&fmt=ahah

References

  1. Akopyants, N. S., Clifton, S. W., Kersulyte, D., Crabtree, J. E., Youree, B. E., Reece, C. A., Bukanov, N. O., Drazek, E. S., Roe, B. A. & Berg, D. E. ( 1998; ). Analyses of the cag pathogenicity island of Helicobacter pylori. Mol Microbiol 28, 37–53.
    [Google Scholar]
  2. Audibert, C., Burucoa, C., Janvier, B. & Fauchère, J. L. ( 2001; ). Implication of the structure of the Helicobacter pylori cag pathogenicity island in induction of interleukin-8 secretion. Infect Immun 69, 1625–1629.[CrossRef]
    [Google Scholar]
  3. Backert, S., Schwarz, T., Miehlke, S., Kirsch, C., Sommer, C., Kwok, T., Gerhard, M., Goebel, U. B., Lehn, N. & other authors ( 2004; ). Functional analysis of the cag pathogenicity island in Helicobacter pylori isolates from patients with gastritis, peptic ulcer and gastric cancer. Infect Immun 72, 1043–1056.[CrossRef]
    [Google Scholar]
  4. Censini, S., Lange, C., Xiang, Z., Crabtree, J. E., Ghiara, P., Borodovsky, M., Rappuoli, R. & Covacci, A. ( 1996; ). cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A 93, 14648–14653.[CrossRef]
    [Google Scholar]
  5. Covacci, A. & Rappuoli, R. ( 2000; ). Tyrosine-phosphorylated bacterial proteins: Trojan horses for the host cell. J Exp Med 191, 587–592.[CrossRef]
    [Google Scholar]
  6. Covacci, A., Censini, S., Bugnoli, M., Petracca, R., Burroni, D., Macchia, G., Massone, A., Papini, E., Xiang, Z. & other authors ( 1993; ). Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc Natl Acad Sci U S A 90, 5791–5795.[CrossRef]
    [Google Scholar]
  7. Dixon, M. F., Genta, R. M., Yardley, J. H. & Correa, P. ( 1996; ). Classification and grading of gastritis. The updated Sydney system. International Workshop on the Histopathology of Gastritis, Houston 1994. Am J Surg Pathol 20, 1161–1181.
    [Google Scholar]
  8. Dong, W.-G., Cheng, C.-S., Liu, S.-P. & Yu, J.-P. ( 2004; ). Epidemiology of peptic ulcer disease in Wuhan area of China from 1997 to 2002. World J Gastroenterol 10, 3377–3379.
    [Google Scholar]
  9. Fischer, W., Püls, J., Buhrdorf, R., Gebert, B., Odenbreit, S. & Haas, R. ( 2001; ). Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol 42, 1337–1348.
    [Google Scholar]
  10. Fujioka, N., Fahey, M. T., Hamada, G. S., Nishimoto, I. N., Kowalski, L. P., Iriya, K., Rodrigues, J. J., Tajiri, H. & Tsugane, S. ( 2001; ). Serological immunoglobulin G antibody titers to Helicobacter pylori in Japanese Brazilian and non-Japanese Brazilian gastric cancer patients and controls in Sao Paulo. Jpn J Cancer Res 92, 829–835.[CrossRef]
    [Google Scholar]
  11. Glocker, E., Lange, C., Covacci, A., Bereswill, S., Kist, M. & Pahl, H. L. ( 1998; ). Proteins encoded by the cag pathogenicity island of Helicobacter pylori are required for NF-κB activation. Infect Immun 66, 2346–2348.
    [Google Scholar]
  12. Hammar, M., Tyszkiewicz, T., Wadström, T. & O'Toole, P. W. ( 1992; ). Rapid detection of Helicobacter pylori in gastric biopsy material by polymerase chain reaction. J Clin Microbiol 30, 54–58.
    [Google Scholar]
  13. Higashi, H., Yokoyama, K., Fujii, Y., Ren, S., Yuasa, H., Saadat, I., Murata-Kamiya, N., Azuma, T. & Hatakeyama, M. ( 2005; ). EPIYA motif is a membrane-targeting signal of Helicobacter pylori virulence factor CagA in mammalian cells. J Biol Chem 280, 23130–23137.[CrossRef]
    [Google Scholar]
  14. Hsu, P.-I., Hwang, I., Cittelly, D., Lai, K.-H., El-Zimaity, H. M., Gutierrez, O., Kim, J. G., Osato, M. S., Graham, D. Y. & Yamaoka, Y. ( 2002; ). Clinical presentation in relation to diversity within the Helicobacter pylori cag pathogenicity island. Am J Gastroenterol 97, 2231–2238.[CrossRef]
    [Google Scholar]
  15. Ikenoue, T., Maeda, S., Ogura, K., Akanuma, M., Mitsuno, Y., Imai, Y., Yoshida, H., Shiratori, Y. & Omata, M. ( 2001; ). Determination of Helicobacter pylori virulence by simple gene analysis of the cag pathogenicity island. Clin Diagn Lab Immunol 8, 181–186.
    [Google Scholar]
  16. Jenks, P. J., Mégraud, F. & Labigne, A. ( 1998; ). Clinical outcome after infection with Helicobacter pylori does not appear to be reliably predicted by the presence of the genes of the cag pathogenicity island. Gut 43, 752–758.[CrossRef]
    [Google Scholar]
  17. Kauser, F., Khan, A. A., Hussain, M. A., Carroll, I. M., Ahmad, N., Tiwari, S., Shouche, Y., Das, B., Alam, M. & other authors ( 2004; ). The cag pathogenicity island of Helicobacter pylori is disrupted in the majority of patient isolates from different human populations. J Clin Microbiol 42, 5302–5308.[CrossRef]
    [Google Scholar]
  18. Kauser, F., Hussain, M. A., Ahmed, I., Srinivas, S., Devi, S. M., Majeed, A. A., Rao, K. R., Khan, A. A., Sechi, L. A. & Ahmed, N. ( 2005; ). Comparative genomics of Helicobacter pylori isolates recovered from ulcer disease patients in England. BMC Microbiol 5, 32.[CrossRef]
    [Google Scholar]
  19. Kidd, M., Lastovica, A. J., Atherton, J. C. & Louw, J. A. ( 2001; ). Conservation of the cag pathogenicity island is associated with vacA alleles and gastroduodenal disease in South African Helicobacter pylori isolates. Gut 49, 11–17.[CrossRef]
    [Google Scholar]
  20. Liu, E. S., Wong, B. C. & Cho, C. H. ( 2001; ). Influence of gender difference and gastritis on gastric ulcer formation in rats. J Gastroenterol Hepatol 16, 740–747.[CrossRef]
    [Google Scholar]
  21. Maeda, S., Yoshida, H., Ikenoue, T., Ogura, K., Kanai, F., Kato, N., Shiratori, Y. & Omata, M. ( 1999; ). Structure of cag pathogenicity island in Japanese Helicobacter pylori isolates. Gut 44, 336–341.[CrossRef]
    [Google Scholar]
  22. Maeda, S., Akanuma, M., Mitsuno, Y., Hirata, Y., Ogura, K., Yoshida, H., Shiratori, Y. & Omata, M. ( 2001; ). Distinct mechanism of Helicobacter pylori-mediated NF-kappa B activation between gastric cancer cells and monocytic cells. J Biol Chem 276, 44856–44864.[CrossRef]
    [Google Scholar]
  23. Mattar, R., dos Santos, A. F., Eisig, J. N., Rodrigues, T. N., Silva, F. M., Lupinacci, R. M., Iriya, K. & Carrilho, F. J. ( 2005; ). No correlation of babA2 with vacA and cagA genotypes of Helicobacter pylori and grading of gastritis from peptic ulcer disease patients in Brazil. Helicobacter 10, 601–608.[CrossRef]
    [Google Scholar]
  24. Nilsson, C., Sillén, A., Eriksson, L., Strand, M.-L., Enroth, H., Normark, S., Falk, P. & Engstrand, L. ( 2003; ). Correlation between cag pathogenicity island composition and Helicobacter pylori-associated gastroduodenal disease. Infect Immun 71, 6573–6581.[CrossRef]
    [Google Scholar]
  25. Owen, R. J., Sharp, S. I., Chisholm, S. A. & Rijpkema, S. ( 2003; ). Identification of cagA tyrosine phosphorylation DNA motifs in Helicobacter pylori isolates from peptic ulcer patients by novel PCR-restriction fragment length polymorphism and real-time fluorescence PCR assays. J Clin Microbiol 41, 3112–3118.[CrossRef]
    [Google Scholar]
  26. Peek, R. M., Jr ( 2005; ). Pathogenesis of Helicobacter pylori infection. Springer Semin Immunopathol 27, 197–215.[CrossRef]
    [Google Scholar]
  27. Rohde, M., Püls, J., Buhrdorf, R., Fischer, W. & Haas, R. ( 2003; ). A novel sheathed surface organelle of the Helicobacter pylori cag type IV secretion system. Mol Microbiol 49, 219–234.[CrossRef]
    [Google Scholar]
  28. Rudi, J., Kolb, C., Maiwald, M., Kuck, D., Sieg, A., Galle, P. R. & Stremmel, W. ( 1998; ). Diversity of Helicobacter pylori vacA and cagA genes and relationship to VacA and CagA protein expression, cytotoxin production, and associated diseases. J Clin Microbiol 36, 944–948.
    [Google Scholar]
  29. Segal, E. D., Lange, C., Covacci, A., Tompkins, L. S. & Falkow, S. ( 1997; ). Induction of host signal transduction pathways by Helicobacter pylori. Proc Natl Acad Sci U S A 94, 7595–7599.[CrossRef]
    [Google Scholar]
  30. Segal, E. D., Cha, J., Lo, J., Falkow, S. & Tompkins, L. S. ( 1999; ). Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci U S A 96, 14559–14564.[CrossRef]
    [Google Scholar]
  31. Selbach, M., Moese, S., Hauck, C. R., Meyer, T. F. & Backert, S. ( 2002; ). Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J Biol Chem 277, 6775–6778.[CrossRef]
    [Google Scholar]
  32. Stein, M., Bagnoli, F., Halenbeck, R., Rappuoli, R., Fantl, W. J. & Covacci, A. ( 2002; ). C-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol Microbiol 43, 971–980.[CrossRef]
    [Google Scholar]
  33. Tummuru, M. K. R., Sharma, S. A. & Blaser, M. J. ( 1995; ). Helicobacter pylori picB, a homologue of the Bordetella pertussis toxin secretion protein, is required for induction of IL-8 in gastric epithelial cells. Mol Microbiol 18, 867–876.[CrossRef]
    [Google Scholar]
  34. Zhang, Y., Argent, R. H., Letley, D. P., Thomas, R. J. & Atherton, J. C. ( 2005; ). Tyrosine phosphorylation of CagA from Chinese Helicobacter pylori isolates in AGS gastric epithelial cells. J Clin Microbiol 43, 786–790.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46824-0
Loading
/content/journal/jmm/10.1099/jmm.0.46824-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error