1887

Abstract

The OmcB protein of is a cysteine-rich outer membrane polypeptide with important functional, structural and antigenic properties. The entire gene encoding the OmcB protein from serovar LGV1 was cloned and expressed in and the full-length protein used to raise polyclonal antibodies. Recombinant OmcB was used to show that OmcB is a surface-exposed protein that functions as a chlamydial adhesin. Infectivity inhibition assays carried out using HeLa cells with serovar LGV1 in the presence of purified anti-OmcB serum showed inhibition of infectivity, suggesting that some of the OmcB was surface exposed. Moreover, using recombinant OmcB in infectivity inhibition assays resulted in 70 % inhibition of infectivity, confirming that OmcB plays a role as an adhesin in . Furthermore, recombinant OmcB protein bound to the surface of HeLa and Hec1B cells, but binding to glycosaminoglycan (GAG)-deficient cells (A-745 and D-677) was markedly reduced, indicating that OmcB binds to GAG-like receptors on host cells.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46801-0
2007-01-01
2019-08-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/1/15.html?itemId=/content/journal/jmm/10.1099/jmm.0.46801-0&mimeType=html&fmt=ahah

References

  1. Allen, J. E. & Stephens, R. S. ( 1989; ). Identification by sequence analysis of two-site posttranslational processing of the cysteine-rich outer membrane protein 2 of Chlamydia trachomatis serovar L2. J Bacteriol 171, 285–291.
    [Google Scholar]
  2. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  3. Caldwell, H. D., Kromhout, J. & Schachter, J. ( 1981; ). Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun 31, 1161–1176.
    [Google Scholar]
  4. Chen, J. C. & Stephens, R. S. ( 1994; ). Trachoma and LGV biovars of Chlamydia trachomatis share the same glycosaminoglycan-dependent mechanism for infection of eukaryotic cells. Mol Microbiol 11, 501–507.[CrossRef]
    [Google Scholar]
  5. Collett, B. A., Newhall, W. J., Jersild, R. A., Jr & Jones, R. B. ( 1989; ). Detection of surface-exposed epitopes on Chlamydia trachomatis by immune electron microscopy. J Gen Microbiol 135, 85–94.
    [Google Scholar]
  6. Dascher, C., Roll, D. & Bavoil, P. M. ( 1993; ). Expression and translocation of the chlamydial major outer membrane protein in Escherichia coli. Microb Pathog 15, 455–467.[CrossRef]
    [Google Scholar]
  7. Davis, C. H. & Wyrick, P. B. ( 1997; ). Differences in the association of Chlamydia trachomatis serovar E and serovar L2 with epithelial cells in vitro may reflect biological differences in vivo. Infect Immun 65, 2914–2924.
    [Google Scholar]
  8. Eko, F. O., He, Q., Brown, T., McMillan, L., Ifere, G. O., Ananaba, G. A., Lyn, D., Lubitz, W., Kellar, K. L. & other authors ( 2004; ). A novel recombinant multisubunit vaccine against Chlamydia. J Immunol 173, 3375–3382.[CrossRef]
    [Google Scholar]
  9. Esko, J. D., Stewart, T. E. & Taylor, W. H. ( 1985; ). Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc Natl Acad Sci U S A 82, 3197–3201.[CrossRef]
    [Google Scholar]
  10. Everett, K. D. E. & Hatch, T. P. ( 1995; ). Architecture of the cell envelope of Chlamydia psittaci 6BC. J Bacteriol 177, 877–882.
    [Google Scholar]
  11. Fadel, S. & Eley, A. ( 2004; ). Chlorate: a reversible inhibitor of proteoglycan sulphation in Chlamydia trachomatis-infected cells. J Med Microbiol 53, 93–95.[CrossRef]
    [Google Scholar]
  12. Gonzales, G. F., Muñoz, G., Sánchez, R., Henkel, R., Gallegos-Avila, G., Díaz-Gutierrez, O., Vigil, P., Vásquez, F., Kortebani, G. & other authors ( 2004; ). Update on the impact of Chlamydia trachomatis infection on male fertility. Andrologia 36, 1–23.[CrossRef]
    [Google Scholar]
  13. Hackstadt, T. ( 1999; ). Cell biology. In Chlamydia: Intracellular Biology, Pathogenesis, and Immunity, pp. 101–138. Edited by R. S. Stephens. Washington, DC: American Society for Microbiology.
  14. Herold, B. C., Siston, A., Bremer, J., Kirkpatrick, R., Wilbanks, G., Fugedi, P., Peto, C. & Cooper, M. ( 1997; ). Sulfated carbohydrate compounds prevent microbial adherence by sexually transmitted disease pathogens. Antimicrob Agents Chemother 41, 2776–2780.
    [Google Scholar]
  15. Lidholt, K., Weinke, J. L., Kiser, C. S., Lugemwa, F. N., Bame, K. J., Cheifetz, S., Massague, J., Lindahl, U. & Esko, J. D. ( 1992; ). A single mutation affects both N-acetylglucosaminyltransferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. Proc Natl Acad Sci U S A 89, 2267–2271.[CrossRef]
    [Google Scholar]
  16. Luostarinen, T., Lehtinen, M., Bjorge, T., Abeler, V., Hakama, M., Hallmans, G., Jellum, E., Koskela, P., Lenner, P. & other authors ( 2004; ). Joint effects of different human papillomaviruses and Chlamydia trachomatis infections on risk of squamous cell carcinoma of the cervix uteri. Eur J Cancer 40, 1058–1065.[CrossRef]
    [Google Scholar]
  17. Mabey, D. C. W., Solomon, A. W. & Foster, A. ( 2003; ). Trachoma. Lancet 362, 223–229.[CrossRef]
    [Google Scholar]
  18. Mamelak, D., Mylvaganam, M., Whetstone, H. Hartmann E., Lennarz, W., Wyrick, P. B., Raulston, J., Han, H. & Hoffman, P. & Lingwood C. A. ( 2001; ). Hsp70s contain a specific sulfogalactolipid binding site. Differential aglycone influence on sulfogalactosyl ceramide binding by recombinant prokaryotic and eukaryotic Hsp70 family members. Biochemistry 40, 3572–3582.[CrossRef]
    [Google Scholar]
  19. Mygind, P., Christiansen, G. & Birkelund, S. ( 1998; ). Topological analysis of L2 outer membrane protein 2. J Bacteriol 180, 5784–5787.
    [Google Scholar]
  20. Mygind, P., Christiansen, G., Persson, K. & Birkelund, S. ( 1998; ). Analysis of the humoral immune response to Chlamydia outer membrane protein 2. Clin Diagn Lab Immunol 5, 313–318.
    [Google Scholar]
  21. Newhall, W. J. V. ( 1987; ). Biosynthesis and disulfide cross-linking of outer membrane components during the growth cycle of Chlamydia trachomatis. Infect Immun 55, 162–168.
    [Google Scholar]
  22. Oroz, C., Porter-Boveri, K. A. & Thompson, C. ( 2001; ). Chlamydial infections in children. Sex Transm Infect 77, 462.[CrossRef]
    [Google Scholar]
  23. Penttilä, T., Tammiruusu, A., Liljeström, P., Sarvas, M., Mäkela, P. H., Vuola, J. M. & Puolakkainen, M. ( 2004; ). DNA immunization followed by a viral vector booster in a Chlamydia pneumoniae mouse model. Vaccine 22, 3386–3394.[CrossRef]
    [Google Scholar]
  24. Raulston, J. E., Davis, C. H., Paul, T. R., Hobbs, J. D. & Wyrick, P. B. ( 2002; ). Surface accessibility of the 70-kilodalton Chlamydia trachomatis heat shock protein following reduction of outer membrane protein disulfide bonds. Infect Immun 70, 535–543.[CrossRef]
    [Google Scholar]
  25. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  26. Sardinia, L. M., Segal, E. & Ganem, D. ( 1988; ). Developmental regulation of the cysteine-rich outer-membrane proteins of murine Chlamydia trachomatis. J Gen Microbiol 134, 997–1004.
    [Google Scholar]
  27. Sayers, J. R. & Eckstein, F. ( 1991; ). A single-strand specific endonuclease activity copurifies with overexpressed T5 D15 exonuclease. Nucleic Acids Res 19, 4127–4132.[CrossRef]
    [Google Scholar]
  28. Smeets, L. C., Bijlsma, J. J. E., Boomkens, S. Y., Vandenbroucke-Grauls, C. M. J. E. & Kusters, J. G. ( 2000; ). comH, a novel gene essential for natural transformation of Helicobacter pylori. J Bacteriol 182, 3948–3954.[CrossRef]
    [Google Scholar]
  29. Stephens, R. S., Fawaz, F. S., Kennedy, K. A., Koshiyama, K., Nichols, B., van Ooij, C. & Engel, J. N. ( 2000; ). Eukaryotic cell uptake of heparin-coated microspheres: a model of host cell invasion by Chlamydia trachomatis. Infect Immun 68, 1080–1085.[CrossRef]
    [Google Scholar]
  30. Stephens, R. S., Koshiyama, K., Lewis, E. & Kubo, A. ( 2001; ). Heparin-binding outer membrane protein of chlamydiae. Mol Microbiol 40, 691–699.[CrossRef]
    [Google Scholar]
  31. Su, H., Watkins, N. G., Zhang, Y.-X. & Caldwell, H. D. ( 1990; ). Chlamydia trachomatis – host cell interactions: role of the chlamydial major outer membrane protein as an adhesin. Infect Immun 58, 1017–1025.
    [Google Scholar]
  32. Su, H., Raymond, L., Rockey, D. D., Fischer, E., Hackstadt, T. & Caldwell, H. D. ( 1996; ). A recombinant Chlamydia trachomatis major outer membrane protein binds to heparan sulfate receptors on epithelial cells. Proc Natl Acad Sci U S A 93, 11143–11148.[CrossRef]
    [Google Scholar]
  33. Swanson, A. F. & Kuo, C.-C. ( 1994; ). Binding of the glycan of the major outer membrane protein of Chlamydia trachomatis to HeLa cells. Infect Immun 62, 24–28.
    [Google Scholar]
  34. Taraktchoglou, M., Pacey, A. A., Turnbull, J. E. & Eley, A. ( 2001; ). Infectivity of Chlamydia trachomatis serovar LGV but not E is dependent on host cell heparan sulfate. Infect Immun 69, 968–976.[CrossRef]
    [Google Scholar]
  35. Thornley, J. P., Shaw, J. G., Gryllos, I. A. & Eley, A. ( 1996; ). Adherence of Aeromonas caviae to human cell lines HEp-2 and Caco-2. J Med Microbiol 45, 445–451.[CrossRef]
    [Google Scholar]
  36. Ting, L. M., Hsia, R. C., Haidaris, C. G. & Bavoil, P. M. ( 1995; ). Interaction of outer envelope proteins of Chlamydia psittaci GPIC with the HeLa cell surface. Infect Immun 63, 3600–3608.
    [Google Scholar]
  37. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76, 4350–4354.[CrossRef]
    [Google Scholar]
  38. Vretou, E., Goswami, P. C. & Bose, S. K. ( 1989; ). Adherence of multiple serovars of Chlamydia trachomatis to a common receptor on HeLa and McCoy cells is mediated by thermolabile protein(s). J Gen Microbiol 135, 3229–3237.
    [Google Scholar]
  39. Wagels, G., Rasmussen, S. & Timms, P. ( 1994; ). Comparison of Chlamydia pneumoniae isolates by Western blot (immunoblot) analysis and DNA sequencing of the omp 2 gene. J Clin Microbiol 32, 2820–2823.
    [Google Scholar]
  40. Watson, M. W., Lambden, P. R., Everson, J. S. & Clarke, I. N. ( 1994; ). Immunoreactivity of the 60 kDa cysteine-rich proteins of Chlamydia trachomatis, Chlamydia psittaci and Chlamydia pneumoniae expressed in Escherichia coli. Microbiology 140, 2003–2011.[CrossRef]
    [Google Scholar]
  41. Zhang, J. P. & Stephens, R. S. ( 1992; ). Mechanism of Chlamydia trachomatis attachment to eukaryotic host cells. Cell 69, 861–869.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46801-0
Loading
/content/journal/jmm/10.1099/jmm.0.46801-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error