1887

Abstract

The OmcB protein of is a cysteine-rich outer membrane polypeptide with important functional, structural and antigenic properties. The entire gene encoding the OmcB protein from serovar LGV1 was cloned and expressed in and the full-length protein used to raise polyclonal antibodies. Recombinant OmcB was used to show that OmcB is a surface-exposed protein that functions as a chlamydial adhesin. Infectivity inhibition assays carried out using HeLa cells with serovar LGV1 in the presence of purified anti-OmcB serum showed inhibition of infectivity, suggesting that some of the OmcB was surface exposed. Moreover, using recombinant OmcB in infectivity inhibition assays resulted in 70 % inhibition of infectivity, confirming that OmcB plays a role as an adhesin in . Furthermore, recombinant OmcB protein bound to the surface of HeLa and Hec1B cells, but binding to glycosaminoglycan (GAG)-deficient cells (A-745 and D-677) was markedly reduced, indicating that OmcB binds to GAG-like receptors on host cells.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46801-0
2007-01-01
2021-10-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/1/15.html?itemId=/content/journal/jmm/10.1099/jmm.0.46801-0&mimeType=html&fmt=ahah

References

  1. Allen J. E., Stephens R. S. 1989; Identification by sequence analysis of two-site posttranslational processing of the cysteine-rich outer membrane protein 2 of Chlamydia trachomatis serovar L2. J Bacteriol 171:285–291
    [Google Scholar]
  2. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  3. Caldwell H. D., Kromhout J., Schachter J. 1981; Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis . Infect Immun 31:1161–1176
    [Google Scholar]
  4. Chen J. C., Stephens R. S. 1994; Trachoma and LGV biovars of Chlamydia trachomatis share the same glycosaminoglycan-dependent mechanism for infection of eukaryotic cells. Mol Microbiol 11:501–507 [CrossRef]
    [Google Scholar]
  5. Collett B. A., Newhall W. J., Jersild R. A. Jr, Jones R. B. 1989; Detection of surface-exposed epitopes on Chlamydia trachomatis by immune electron microscopy. J Gen Microbiol 135:85–94
    [Google Scholar]
  6. Dascher C., Roll D., Bavoil P. M. 1993; Expression and translocation of the chlamydial major outer membrane protein in Escherichia coli . Microb Pathog 15:455–467 [CrossRef]
    [Google Scholar]
  7. Davis C. H., Wyrick P. B. 1997; Differences in the association of Chlamydia trachomatis serovar E and serovar L2 with epithelial cells in vitro may reflect biological differences in vivo. Infect Immun 65:2914–2924
    [Google Scholar]
  8. Eko F. O., He Q., Brown T., McMillan L., Ifere G. O., Ananaba G. A., Lyn D., Lubitz W., Kellar K. L. other authors 2004; A novel recombinant multisubunit vaccine against Chlamydia . J Immunol 173:3375–3382 [CrossRef]
    [Google Scholar]
  9. Esko J. D., Stewart T. E., Taylor W. H. 1985; Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc Natl Acad Sci U S A 82:3197–3201 [CrossRef]
    [Google Scholar]
  10. Everett K. D. E., Hatch T. P. 1995; Architecture of the cell envelope of Chlamydia psittaci 6BC. J Bacteriol 177:877–882
    [Google Scholar]
  11. Fadel S., Eley A. 2004; Chlorate: a reversible inhibitor of proteoglycan sulphation in Chlamydia trachomatis -infected cells. J Med Microbiol 53:93–95 [CrossRef]
    [Google Scholar]
  12. Gonzales G. F., Muñoz G., Sánchez R., Henkel R., Gallegos-Avila G., Díaz-Gutierrez O., Vigil P., Vásquez F., Kortebani G. other authors 2004; Update on the impact of Chlamydia trachomatis infection on male fertility. Andrologia 36:1–23 [CrossRef]
    [Google Scholar]
  13. Hackstadt T. 1999; Cell biology. In Chlamydia: Intracellular Biology, Pathogenesis, and Immunity pp  101–138 Edited by Stephens R. S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Herold B. C., Siston A., Bremer J., Kirkpatrick R., Wilbanks G., Fugedi P., Peto C., Cooper M. 1997; Sulfated carbohydrate compounds prevent microbial adherence by sexually transmitted disease pathogens. Antimicrob Agents Chemother 41:2776–2780
    [Google Scholar]
  15. Lidholt K., Weinke J. L., Kiser C. S., Lugemwa F. N., Bame K. J., Cheifetz S., Massague J., Lindahl U., Esko J. D. 1992; A single mutation affects both N -acetylglucosaminyltransferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. Proc Natl Acad Sci U S A 89:2267–2271 [CrossRef]
    [Google Scholar]
  16. Luostarinen T., Lehtinen M., Bjorge T., Abeler V., Hakama M., Hallmans G., Jellum E., Koskela P., Lenner P. other authors 2004; Joint effects of different human papillomaviruses and Chlamydia trachomatis infections on risk of squamous cell carcinoma of the cervix uteri. Eur J Cancer 40:1058–1065 [CrossRef]
    [Google Scholar]
  17. Mabey D. C. W., Solomon A. W., Foster A. 2003; Trachoma. Lancet 362:223–229 [CrossRef]
    [Google Scholar]
  18. Mamelak D., Mylvaganam M., Whetstone H. Hartmann E., Lennarz W., Wyrick P. B., Raulston J., Han H., Hoffman P., Lingwood C. A. 2001; Hsp70s contain a specific sulfogalactolipid binding site. Differential aglycone influence on sulfogalactosyl ceramide binding by recombinant prokaryotic and eukaryotic Hsp70 family members. Biochemistry 40:3572–3582 [CrossRef]
    [Google Scholar]
  19. Mygind P., Christiansen G., Birkelund S. 1998; Topological analysis of L2 outer membrane protein 2. J Bacteriol 180:5784–5787
    [Google Scholar]
  20. Mygind P., Christiansen G., Persson K., Birkelund S. 1998; Analysis of the humoral immune response to Chlamydia outer membrane protein 2. Clin Diagn Lab Immunol 5:313–318
    [Google Scholar]
  21. Newhall W. J. V. 1987; Biosynthesis and disulfide cross-linking of outer membrane components during the growth cycle of Chlamydia trachomatis . Infect Immun 55:162–168
    [Google Scholar]
  22. Oroz C., Porter-Boveri K. A., Thompson C. 2001; Chlamydial infections in children. Sex Transm Infect 77:462 [CrossRef]
    [Google Scholar]
  23. Penttilä T., Tammiruusu A., Liljeström P., Sarvas M., Mäkela P. H., Vuola J. M., Puolakkainen M. 2004; DNA immunization followed by a viral vector booster in a Chlamydia pneumoniae mouse model. Vaccine 22:3386–3394 [CrossRef]
    [Google Scholar]
  24. Raulston J. E., Davis C. H., Paul T. R., Hobbs J. D., Wyrick P. B. 2002; Surface accessibility of the 70-kilodalton Chlamydia trachomatis heat shock protein following reduction of outer membrane protein disulfide bonds. Infect Immun 70:535–543 [CrossRef]
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Sardinia L. M., Segal E., Ganem D. 1988; Developmental regulation of the cysteine-rich outer-membrane proteins of murine Chlamydia trachomatis . J Gen Microbiol 134:997–1004
    [Google Scholar]
  27. Sayers J. R., Eckstein F. 1991; A single-strand specific endonuclease activity copurifies with overexpressed T5 D15 exonuclease. Nucleic Acids Res 19:4127–4132 [CrossRef]
    [Google Scholar]
  28. Smeets L. C., Bijlsma J. J. E., Boomkens S. Y., Vandenbroucke-Grauls C. M. J. E., Kusters J. G. 2000; comH , a novel gene essential for natural transformation of Helicobacter pylori . J Bacteriol 182:3948–3954 [CrossRef]
    [Google Scholar]
  29. Stephens R. S., Fawaz F. S., Kennedy K. A., Koshiyama K., Nichols B., van Ooij C., Engel J. N. 2000; Eukaryotic cell uptake of heparin-coated microspheres: a model of host cell invasion by Chlamydia trachomatis . Infect Immun 68:1080–1085 [CrossRef]
    [Google Scholar]
  30. Stephens R. S., Koshiyama K., Lewis E., Kubo A. 2001; Heparin-binding outer membrane protein of chlamydiae. Mol Microbiol 40:691–699 [CrossRef]
    [Google Scholar]
  31. Su H., Watkins N. G., Zhang Y.-X., Caldwell H. D. 1990; Chlamydia trachomatis – host cell interactions: role of the chlamydial major outer membrane protein as an adhesin. Infect Immun 58:1017–1025
    [Google Scholar]
  32. Su H., Raymond L., Rockey D. D., Fischer E., Hackstadt T., Caldwell H. D. 1996; A recombinant Chlamydia trachomatis major outer membrane protein binds to heparan sulfate receptors on epithelial cells. Proc Natl Acad Sci U S A 93:11143–11148 [CrossRef]
    [Google Scholar]
  33. Swanson A. F., Kuo C.-C. 1994; Binding of the glycan of the major outer membrane protein of Chlamydia trachomatis to HeLa cells. Infect Immun 62:24–28
    [Google Scholar]
  34. Taraktchoglou M., Pacey A. A., Turnbull J. E., Eley A. 2001; Infectivity of Chlamydia trachomatis serovar LGV but not E is dependent on host cell heparan sulfate. Infect Immun 69:968–976 [CrossRef]
    [Google Scholar]
  35. Thornley J. P., Shaw J. G., Gryllos I. A., Eley A. 1996; Adherence of Aeromonas caviae to human cell lines HEp-2 and Caco-2. J Med Microbiol 45:445–451 [CrossRef]
    [Google Scholar]
  36. Ting L. M., Hsia R. C., Haidaris C. G., Bavoil P. M. 1995; Interaction of outer envelope proteins of Chlamydia psittaci GPIC with the HeLa cell surface. Infect Immun 63:3600–3608
    [Google Scholar]
  37. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354 [CrossRef]
    [Google Scholar]
  38. Vretou E., Goswami P. C., Bose S. K. 1989; Adherence of multiple serovars of Chlamydia trachomatis to a common receptor on HeLa and McCoy cells is mediated by thermolabile protein(s). J Gen Microbiol 135:3229–3237
    [Google Scholar]
  39. Wagels G., Rasmussen S., Timms P. 1994; Comparison of Chlamydia pneumoniae isolates by Western blot (immunoblot) analysis and DNA sequencing of the omp 2 gene. J Clin Microbiol 32:2820–2823
    [Google Scholar]
  40. Watson M. W., Lambden P. R., Everson J. S., Clarke I. N. 1994; Immunoreactivity of the 60 kDa cysteine-rich proteins of Chlamydia trachomatis , Chlamydia psittaci and Chlamydia pneumoniae expressed in Escherichia coli . Microbiology 140:2003–2011 [CrossRef]
    [Google Scholar]
  41. Zhang J. P., Stephens R. S. 1992; Mechanism of Chlamydia trachomatis attachment to eukaryotic host cells. Cell 69:861–869 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46801-0
Loading
/content/journal/jmm/10.1099/jmm.0.46801-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error