Formation and properties of biofilms of -negative clinical isolates Free

Abstract

Coagulase-negative has become the leading cause of foreign-body infections due to its biofilm formation on all kinds of medical-device surfaces. The biofilm development of includes two steps: the initial attachment phase and the accumulative phase. In the accumulative phase, the polysaccharide intercellular adhesin (PIA), encoded by the locus, is the major component mediating intercellular adhesion. However, recent studies have revealed the emergence of biofilm-positive/-negative staphylococcal clinical isolates. In this report, two -negative clinical strains, SE1 and SE4, exhibited their heterogeneity in biofilm architecture under static and flow conditions, compared with the biofilm-positive/-positive RP62A strain. Strains with this type of absence of PIA from biofilms also displayed intermediate resistance to vancomycin. More importantly, the cells of both SE1 and SE4 strains were more tolerant than those of RP62A to exposure to lysostaphin and vancomycin. Based on the results, it is suggested that the biofilm-positive/-negative strain represents a newly emergent subpopulation of clinical strains, arising from selection by antibiotics in the nosocomial milieu, which displays a survival advantage in its host environment. Recent epidemiological data support this suggestion, by showing a tendency towards an increasing proportion of this subpopulation in staphylococci-associated infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46799-0
2007-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/1/83.html?itemId=/content/journal/jmm/10.1099/jmm.0.46799-0&mimeType=html&fmt=ahah

References

  1. Brunskill E. W., Bayles K. W. 1996; Identification and molecular characterization of a putative regulatory locus that affects autolysis in Staphylococcus aureus . J Bacteriol 178:611–618
    [Google Scholar]
  2. Christensen G. D., Simpson W. A., Younger J. J., Baddour L. M., Barrett F. F., Melton D. M., Beachey E. H. 1985; Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006
    [Google Scholar]
  3. Clark J. D., Maaloe O. 1967; DNA replication and the cell cycle in Escherichia coli cells. J Mol Biol 23:99–112 [CrossRef]
    [Google Scholar]
  4. Climo M. W., Patron R. L., Goldstein B. P., Archer G. L. 1998; Lysostaphin treatment of experimental methicillin-resistant Staphylococcus aureus aortic valve endocarditis. Antimicrob Agents Chemother 42:1355–1360
    [Google Scholar]
  5. Cucarella C., Solano C., Valle J., Amorena B., Lasa I., Penades J. R. 2001; Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183:2888–2896 [CrossRef]
    [Google Scholar]
  6. Evans R. C., Holmes C. J. 1987; Effect of vancomycin hydrochloride on Staphylococcus epidermidis biofilm associated with silicone elastomer. Antimicrob Agents Chemother 31:889–894 [CrossRef]
    [Google Scholar]
  7. Fitzpatrick F., Humphreys H., O'Gara J. P. 2005; Evidence for icaADBC -independent biofilm development mechanism in methicillin-resistant Staphylococcus aureus clinical isolates. J Clin Microbiol 43:1973–1976 [CrossRef]
    [Google Scholar]
  8. Frebourg N. B., Lefebvre S., Baert S., Lemeland J. F. 2000; PCR-based assay for discrimination between invasive and contaminating Staphylococcus epidermidis strains. J Clin Microbiol 38:877–880
    [Google Scholar]
  9. Galdbart J. O., Allignet J., Tung H. S., Ryden C., El Solh N. 2000; Screening for Staphylococcus epidermidis markers discriminating between skin-flora strains and those responsible for infections of joint prostheses. J Infect Dis 182:351–355 [CrossRef]
    [Google Scholar]
  10. Gill S. R., Fouts D. E., Archer G. L., Mongodin E. F., Deboy R. T., Ravel J., Paulsen I. T., Kolonay J. F., Brinkac L. other authors 2005; Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 187:2426–2438 [CrossRef]
    [Google Scholar]
  11. Gotz F. 2002; Staphylococcus and biofilms. Mol Microbiol 43:1367–1378 [CrossRef]
    [Google Scholar]
  12. Heilmann C., Schweitzer O., Gerke C., Vanittanakom N., Mack D., Gotz F. 1996; Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis . Mol Microbiol 20:1083–1091 [CrossRef]
    [Google Scholar]
  13. Heilmann C., Hussain M., Peters G., Gotz F. 1997; Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24:1013–1024 [CrossRef]
    [Google Scholar]
  14. Hiramatsu K. 2001; Vancomycin-resistant Staphylococcus aureus : a new model of antibiotic resistance. Lancet Infect Dis 1:147–155 [CrossRef]
    [Google Scholar]
  15. Hiramatsu K., Aritaka N., Hanaki H., Kawasaki S., Hosoda Y., Hori S., Fukuchi Y., Kobayashi I. 1997; Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 350:1670–1673 [CrossRef]
    [Google Scholar]
  16. Hussain M., Herrmann M., von Eiff C., Perdreau-Remington F., Peters G. 1997; A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect Immun 65:519–524
    [Google Scholar]
  17. Inman R. D., Gallegos K. V., Brause B. D., Redecha P. B., Christian C. L. 1984; Clinical and microbial features of prosthetic joint infection. Am J Med 77:47–53
    [Google Scholar]
  18. Jager S., Mack D., Rohde H., Horstkotte M. A., Knobloch J. K. 2005; Disintegration of Staphylococcus epidermidis biofilms under glucose-limiting conditions depends on the activity of the alternative sigma factor sigmaB. Appl Environ Microbiol 71:5577–5581 [CrossRef]
    [Google Scholar]
  19. Jiang J., Sun J. Y., Ou Y. Z., Qin Z. Q., Chen J. M., Qu D. 2006; Influence of ica transcription on biofilm phenotype of Staphylococcus epidermidis clinical isolates. Shanghai Med J 29:40–44 (in Chinese
    [Google Scholar]
  20. Khardori N., Yassien M., Wilson K. 1995; Tolerance of Staphylococcus epidermidis grown from indwelling vascular catheters to antimicrobial agents. J Ind Microbiol 15:148–151 [CrossRef]
    [Google Scholar]
  21. Klug D., Wallet F., Kacet S., Courcol R. J. 2003; Involvement of adherence and adhesion Staphylococcus epidermidis genes in pacemaker lead-associated infections. J Clin Microbiol 41:3348–3350 [CrossRef]
    [Google Scholar]
  22. Kogan G., Sadovskaya I., Chaignon P., Chokr A., Jabbouri S. 2006; Biofilms of clinical strains of Staphylococcus that do not contain polysaccharide intercellular adhesin. FEMS Microbiol Lett 255:11–16 [CrossRef]
    [Google Scholar]
  23. Li H., Xu L., Wang J., Wen Y., Vuong C., Otto M., Gao Q. 2005; Conversion of Staphylococcus epidermidis strains from commensal to invasive by expression of the ica locus encoding production of biofilm exopolysaccharide. Infect Immun 73:3188–3191 [CrossRef]
    [Google Scholar]
  24. Mack D. 1999; Molecular mechanisms of Staphylococcus epidermidis biofilm formation. J Hosp Infect 43:Suppl.S113–S125 [CrossRef]
    [Google Scholar]
  25. Mack D., Fischer W., Krokotsch A., Leopold K., Hartmann R., Egge H., Laufs R. 1996; The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178:175–183
    [Google Scholar]
  26. Mack D., Becker P., Chatterjee I., Dobinsky S., Knobloch J. K., Peters G., Rohde H., Herrmann M. 2004; Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus : functional molecules, regulatory circuits, and adaptive responses. Int J Med Microbiol 294:203–212 [CrossRef]
    [Google Scholar]
  27. Moller S., Sternberg C., Andersen J. B., Christensen B. B., Ramos J. L., Givskov M., Molin S. 1998; In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Appl Environ Microbiol 64:721–732
    [Google Scholar]
  28. NCCLS 1997 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically , 4th edn. Approved standard M7-A4 Villanova, PA: National Committee for Clinical Laboratory Standards;
    [Google Scholar]
  29. Ninin E., Caroff N., Espaze E., Maraillac J., Lepelletier D., Milpied N., Richet H. 2006; Assessment of ica operon carriage and biofilm production in Staphylococcus epidermidis isolates causing bacteraemia in bone marrow transplant recipients. Clin Microbiol Infect 12:446–452 [CrossRef]
    [Google Scholar]
  30. Nunes A. P., Teixeira L. M., Iorio N. L., Bastos C. C., de Sousa Fonseca L., Souto-Padron T., dos Santos K. R. 2006; Heterogeneous resistance to vancomycin in Staphylococcus epidermidis , Staphylococcus haemolyticus and Staphylococcus warneri clinical strains: characterisation of glycopeptide susceptibility profiles and cell wall thickening. Int J Antimicrob Agents 27:307–315 [CrossRef]
    [Google Scholar]
  31. Patron R. L., Climo M. W., Goldstein B. P., Archer G. L. 1999; Lysostaphin treatment of experimental aortic valve endocarditis caused by a Staphylococcus aureus isolate with reduced susceptibility to vancomycin. Antimicrob Agents Chemother 43:1754–1755
    [Google Scholar]
  32. Petersen P. J., Wang T. Z., Dushin R. G., Bradford P. A. 2004; Comparative in vitro activities of AC98-6446, a novel semisynthetic glycopeptide derivative of the natural product mannopeptimycin alpha, and other antimicrobial agents against Gram-positive clinical isolates. Antimicrob Agents Chemother 48:739–746 [CrossRef]
    [Google Scholar]
  33. Raad I. I., Bodey G. P. 1992; Infectious complications of indwelling vascular catheters. Clin Infect Dis 15:197–208 [CrossRef]
    [Google Scholar]
  34. Rohde H., Burdelski C., Bartscht K., Hussain M., Buck F., Horstkotte M. A., Knobloch J. K., Heilmann C., Herrmann M., Mack D. 2005; Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol 55:1883–1895 [CrossRef]
    [Google Scholar]
  35. Rupp M. E., Archer G. L. 1994; Coagulase-negative staphylococci: pathogens associated with medical progress. Clin Infect Dis 19:231–243 [CrossRef]
    [Google Scholar]
  36. Rupp M. E., Ulphani J. S., Fey P. D., Bartscht K., Mack D. 1999a; Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infect Immun 67:2627–2632
    [Google Scholar]
  37. Rupp M. E., Ulphani J. S., Fey P. D., Mack D. 1999b; Characterization of Staphylococcus epidermidis polysaccharide intercellular adhesin/hemagglutinin in the pathogenesis of intravascular catheter-associated infection in a rat model. Infect Immun 67:2656–2659
    [Google Scholar]
  38. Rupp M. E., Fey P. D., Heilmann C., Gotz F. 2001; Characterization of the importance of Staphylococcus epidermidis autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheter-associated infection in a rat model. J Infect Dis 183:1038–1042 [CrossRef]
    [Google Scholar]
  39. Schwalbe R. S., Stapleton J. T., Gilligan P. H. 1987; Emergence of vancomycin resistance in coagulase-negative staphylococci. N Engl J Med 316:927–931 [CrossRef]
    [Google Scholar]
  40. Sieradzki K., Tomasz A. 2006; Inhibition of the autolytic system by vancomycin causes mimicry of vancomycin-intermediate Staphylococcus aureus -type resistance, cell concentration dependence of the MIC, and antibiotic tolerance in vancomycin-susceptible S. aureus . Antimicrob Agents Chemother 50:527–533 [CrossRef]
    [Google Scholar]
  41. Toledo-Arana A., Merino N., Vergara-Irigaray M., Debarbouille M., Penades J. R., Lasa I. 2005; Staphylococcus aureus develops an alternative, ica -independent biofilm in the absence of the arlRS two-component system. J Bacteriol 187:5318–5329 [CrossRef]
    [Google Scholar]
  42. Tormo M. A., Knecht E., Gotz F., Lasa I., Penades J. R. 2005; Bap-dependent biofilm formation by pathogenic species of Staphylococcus : evidence of horizontal gene transfer?. Microbiology 151:2465–2475 [CrossRef]
    [Google Scholar]
  43. Utaida S., Pfeltz R. F., Jayaswal R. K., Wilkinson B. J. 2006; Autolytic properties of glycopeptide-intermediate Staphylococcus aureus Mu50. Antimicrob Agents Chemother 50:1541–1545 [CrossRef]
    [Google Scholar]
  44. Vadyvaloo V., Otto M. 2005; Molecular genetics of Staphylococcus epidermidis biofilms on indwelling medical devices. Int J Artif Organs 28:1069–1078
    [Google Scholar]
  45. von Eiff C., Peters G., Heilmann C. 2002; Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 2:677–685 [CrossRef]
    [Google Scholar]
  46. Vuong C., Voyich J. M., Fischer E. R., Braughton K. R., Whitney A. R., DeLeo F. R., Otto M. 2004; Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6:269–275 [CrossRef]
    [Google Scholar]
  47. Wang X., Preston J. F. III, Romeo T. 2004; The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186:2724–2734 [CrossRef]
    [Google Scholar]
  48. Whitchurch C. B., Tolker-Nielsen T., Ragas P. C., Mattick J. S. 2002; Extracellular DNA required for bacterial biofilm formation. Science 295:1487 [CrossRef]
    [Google Scholar]
  49. Wootton M., Bennett P. M., MacGowan A. P., Walsh T. R. 2005; Reduced expression of the atl autolysin gene and susceptibility to autolysis in clinical heterogeneous glycopeptide-intermediate Staphylococcus aureus (hGISA) and GISA strains. J Antimicrob Chemother 56:944–947 [CrossRef]
    [Google Scholar]
  50. Yang X. M., Li N., Chen J. M., Ou Y. Z., Jin H., Lu H. J., Zhu Y. L., Qin Z. Q., Qu D., Yang P. Y. 2006; Comparative proteomic analysis between the invasive and commensal strains of Staphylococcus epidermidis . FEMS Microbiol Lett 261:32–40 [CrossRef]
    [Google Scholar]
  51. Zhang Y. Q., Ren S. X., Li H. L., Wang Y. X., Fu G., Yang J., Qin Z. Q., Miao Y. G., Wang W. Y. other authors 2003; Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol Microbiol 49:1577–1593 [CrossRef]
    [Google Scholar]
  52. Ziebuhr W., Heilmann C., Gotz F., Meyer P., Wilms K., Straube E., Hacker J. 1997; Detection of the intercellular adhesion gene cluster ( ica ) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect Immun 65:890–896
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46799-0
Loading
/content/journal/jmm/10.1099/jmm.0.46799-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF

Most cited Most Cited RSS feed