1887

Abstract

Previous epidemiological studies have demonstrated a potential link between the serotypes of recovered from cattle, sheep and pigs and those isolated from human disease cases. Further studies utilizing amplified fragment length polymorphisms have shown a relationship at the genetic level between strains of biotypes 3 and 4 from humans and livestock, and also suggested that some biotype 1A isolates, classically defined as non-pathogenic, are closely related to biotype 3 and 4 isolates. This study sought to understand further the pathogenic potential of isolates from livestock in Great Britain. A range of surrogate models, such as invasion of epithelial tissue cultures, survival in cultured macrophages and cytokine secretion response, was employed to assess the pathogenicity of 88 strains. The results suggested that all isolates examined were capable of adhering to and invading epithelial cells and of surviving within macrophages. However, the inflammatory response of the infected macrophages differed with the infecting subtype, with the response to pathogenic biotype 3 and 4 isolates different to that observed with biotype 1A isolates, and with the biotype 3 O : 5,27 isolates recovered exclusively from animals. Infections of porcine tissue also suggested the possibility of host-tissue tropism within subtypes.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46726-0
2006-12-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/12/1725.html?itemId=/content/journal/jmm/10.1099/jmm.0.46726-0&mimeType=html&fmt=ahah

References

  1. Boland, A. & Cornelis, G. R. ( 1998; ). Role of YopP in suppression of tumor necrosis factor alpha release by macrophages during Yersinia infection. Infect Immun 66, 1878–1884.
    [Google Scholar]
  2. Bottone, E. J. ( 1997; ). Yersinia enterocolitica: the charisma continues. Clin Microbiol Rev 10, 257–276.
    [Google Scholar]
  3. Bottone, E. J. ( 1999; ). Yersinia enterocolitica: overview and epidemiologic correlates. Microbes Infect 1, 323–333.[CrossRef]
    [Google Scholar]
  4. Carlos, I. Z., Monnazzi, L. G. S., Falcão, D. P. & Machado de Medeiros, B. M. ( 2004; ). TNF-α, H2O2 and NO response of peritoneal macrophages to Yersinia enterocolitica O : 3 derivatives. Microbes Infect 6, 207–212.[CrossRef]
    [Google Scholar]
  5. Cornelis, G. R. & Wolf-Watz, H. ( 1997; ). The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol Microbiol 23, 861–867.[CrossRef]
    [Google Scholar]
  6. Denecker, G., Tötemeyer, S., Mota, L. J., Troisfontaines, P., Lambermont, I., Youta, C., Stainier, I., Ackermann, M. & Cornelis, G. R. ( 2002; ). Effect of low- and high-virulence Yersinia enterocolitica strains on the inflammatory response of human umbilical vein endothelial cells. Infect Immun 70, 3510–3520.[CrossRef]
    [Google Scholar]
  7. Dibb-Fuller, M. P., Allen-Vercoe, E., Thorns, C. J. & Woodward, M. J. ( 1999; ). Fimbriae and flagella-mediated association with and invasion of cultured epithelial cells by Salmonella Enteriditis. Microbiology 145, 1023–1031.[CrossRef]
    [Google Scholar]
  8. Dube, P. H., Handley, S. A., Lewis, J. & Miller, V. L. ( 2004; ). Protective role of interleukin-6 during Yersinia enterocolitica infection is mediated through the modulation of inflammatory cytokines. Infect Immun 72, 3561–3570.[CrossRef]
    [Google Scholar]
  9. Erfurth, S. E., Gröbner, S., Kramer, U., Gunst, D. S. J., Soldanova, I., Schaller, M., Autenrieth, I. B. & Borgmann, S. ( 2004; ). Yersinia enterocolitica induces apoptosis and inhibits surface molecule expression and cytokine production in murine dendritic cells. Infect Immun 72, 7045–7054.[CrossRef]
    [Google Scholar]
  10. Fearnley, C., On, S. L. W., Kokotovich, B., Manning, G., Cheasty, T. & Newell, D. G. ( 2005; ). Application of fluorescent amplified fragment length polymorphism to the comparison of human and animal Yersinia enterocolitica. Appl Environ Microbiol 71, 4960–4965.[CrossRef]
    [Google Scholar]
  11. Finlay, B. B. & Falkow, S. ( 1988; ). Comparison of the invasion strategies used by Salmonella cholerae Suis, Shigella flexneri and Yersinia enterocolitica to enter cultured animal cells: endosome acidification is not required for bacterial invasion or intracellular replication. Biochimie 70, 1089–1099.[CrossRef]
    [Google Scholar]
  12. Fitzhenry, R. J., Pickard, D. J., Hartland, E. L., Reece, S., Dougan, G., Phillips, A. D. & Frankel, G. ( 2002a; ). Intimin type influences the site of human intestinal mucosal colonisation by enterohaemorrhagic Escherichia coli O157 : H7. Gut 50, 180–185.[CrossRef]
    [Google Scholar]
  13. Fitzhenry, R. J., Reece, S., Trabulsi, L. R., Heuschkel, R., Murch, S., Thomson, M., Frankel, G. & Phillips, A. D. ( 2002b; ). Tissue tropism of enteropathogenic Escherichia coli strains belonging to the O55 serogroup. Infect Immun 70, 4362–4368.[CrossRef]
    [Google Scholar]
  14. Grant, T., Bennett-Wood, V. & Robins-Browne, R. M. ( 1998; ). Identification of virulence-associated characteristics in clinical isolates of Yersinia enterocolitica lacking classical virulence markers. Infect Immun 66, 1113–1120.
    [Google Scholar]
  15. Grant, T., Bennett-Wood, V. & Robins-Browne, R. M. ( 1999; ). Characterization of the interaction between Yersinia enterocolitica biotype 1A and phagocytes and epithelial cells in vitro. Infect Immun 67, 4367–4375.
    [Google Scholar]
  16. Grassl, G. A., Bohn, E., Müller, Y., Bühler, O. T. & Autenrieth, I. B. ( 2003; ). Interaction of Yersinia enterocolitica with epithelial cells: invasin beyond invasion. Int J Med Microbiol 293, 41–54.[CrossRef]
    [Google Scholar]
  17. Grosdent, N., Maridonneau-Parini, I., Sory, M.-P. & Cornelis, G. R. ( 2002; ). Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis. Infect Immun 70, 4165–4176.[CrossRef]
    [Google Scholar]
  18. Hamzaoui, N., Kernéis, S., Caliot, E. & Pringault, E. ( 2004; ). Expression and distribution of β1 integrins in in vitro-induced M cells: implications for Yersinia adhesion to Peyer's patch epithelium. Cell Microbiol 6, 817–828.[CrossRef]
    [Google Scholar]
  19. Hautefort, I., Proença, M. J. & Hinton, J. C. D. ( 2003; ). Single-Copy Green Fluorescent Protein gene fusions allow accurate measurement of Salmonella gene expression in vitro and during infection of mammalian cells. Appl Environ Microbiol 69, 7480–7491.[CrossRef]
    [Google Scholar]
  20. Howard, S. L., Gaunt, M. W., Hinds, J., Witney, A. A., Stabler, R. & Wren, B. W. ( 2006; ). Application of comparative phylogenomics to study the evolution of Yersinia enterocolitica and to identify genetic differences relating to pathogenicity. J Bacteriol 188, 3645–3653.[CrossRef]
    [Google Scholar]
  21. Kampik, D., Schulte, R. & Autenrieth, I. B. ( 2000; ). Yersinia enterocolitica invasin protein triggers differential production of interleukin-1, interleukin-8, monocyte chemoattractant protein 1, granulocyte–macrophage colony-stimulating factor, and tumor necrosis factor alpha in epithelial cells: implications for understanding the early cytokine network in Yersinia infections. Infect Immun 68, 2484–2492.[CrossRef]
    [Google Scholar]
  22. McNally, A., Cheasty, T., Fearnley, C., Dalziel, R. W., Paiba, G., Manning, G. & Newell, D. G. ( 2004; ). Comparison of the biotypes of Yersinia enterocolitica isolated from pigs, cattle and sheep at slaughter and from humans with yersiniosis in Great Britain during 1999–2000. Lett Appl Microbiol 39, 103–108.[CrossRef]
    [Google Scholar]
  23. Meyer-Bahlburg, A., Greil, S., Kruse, N., Marienfeld, R., Serfling, E. & Huppertz, H.-I. ( 2004; ). Yersinia enterocolitica leads to transient induction of TNF-α and activates NF-κB in synovial fibroblasts. Clin Exp Rheumatol 22, 278–284.
    [Google Scholar]
  24. Miller, V. L. & Falkow, S. ( 1988; ). Evidence for two genetic loci in Yersinia enterocolitica that can promote invasion of epithelial cells. Infect Immun 56, 1242–1248.
    [Google Scholar]
  25. Morris, J. G., Jr, Prado, V., Ferreccio, C., Robins-Browne, R. M., Bordun, A.-M., Cayazzo, M., Kay, B. A. & Levine, M. M. ( 1991; ). Yersinia enterocolitica isolated from two cohorts of young children in Santiago, Chile: incidence of and lack of correlation between illness and proposed virulence factors. J Clin Microbiol 29, 2784–2788.
    [Google Scholar]
  26. Neyt, C. & Cornelis, G. R. ( 1999; ). Insertion of a Yop translocation pore into the macrophage plasma membrane by Yersinia enterocolitica: requirement for translocators YopB and YopD, but not LcrG. Mol Microbiol 33, 971–981.[CrossRef]
    [Google Scholar]
  27. Pepe, J. C. & Miller, V. L. ( 1993; ). Yersinia enterocolitica invasin: a primary role in the initiation of infection. Proc Natl Acad Sci U S A 90, 6473–6477.[CrossRef]
    [Google Scholar]
  28. Phillips, A. D., Navabpour, S., Hicks, S., Dougan, G., Wallis, T. & Frankel, G. ( 2000; ). Enterohaemorrhagic Escherichia coli O157 : H7 target Peyer's patches in humans and cause attaching/effacing lesions in both human and bovine intestine. Gut 47, 377–381.[CrossRef]
    [Google Scholar]
  29. Pujol, C. & Bliska, J. B. ( 2005; ). Turning Yersinia pathogenesis outside in: subversion of macrophage function by intracellular yersiniae. Clin Immunol 114, 216–226.[CrossRef]
    [Google Scholar]
  30. Ruckdeschel, K., Machold, J., Roggenkamp, A., Schubert, S., Pierre, J., Zumbihl, R., Liautard, J.-P., Heesemann, J. & Rouot, B. ( 1997; ). Yersinia enterocolitica promotes deactivation of macrophage mitogen-activated protein kinases extracellular signal-regulated kinase-1/2, p38, and c-Jun NH2-terminal kinase. Correlation with its inhibitory effect on tumor necrosis factor-α production. J Biol Chem 272, 15920–15927.[CrossRef]
    [Google Scholar]
  31. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  32. Schmid, Y., Grassl, G. A., Bühler, O. T., Skurnik, M., Autenrieth, I. B. & Bohn, E. ( 2004; ). Yersinia enterocolitica adhesin A induces production of interleukin-8 in epithelial cells. Infect Immun 72, 6780–6789.[CrossRef]
    [Google Scholar]
  33. Scholz, O., Thiel, A., Hillen, W. & Niederweis, M. ( 2000; ). Quantitative analysis of gene expression with an improved green fluorescent protein. Eur J Biochem 267, 1565–1570.[CrossRef]
    [Google Scholar]
  34. Schulte, R. & Autenrieth, I. B. ( 1998; ). Yersinia enterocolitica-induced interleukin-8 secretion by human intestinal epithelial cells depends on cell differentiation. Infect Immun 66, 1216–1224.
    [Google Scholar]
  35. Schulte, R., Wattiau, P., Hartland, E. L., Robins-Browne, R. M. & Cornelis, G. R. ( 1996; ). Differential secretion of interleukin-8 by human epithelial cell lines upon entry of virulent or nonvirulent Yersinia enterocolitica. Infect Immun 64, 2106–2113.
    [Google Scholar]
  36. Schulte, R., Grassl, G. A., Preger, S., Fessele, S., Jacobi, C. A., Schaller, M., Nelson, P. J. & Autenrieth, I. B. ( 2000; ). Yersinia enterocolitica invasin protein triggers IL-8 production in epithelial cells via activation of Rel p65-p65 homodimers. FASEB J 14, 1471–1484.[CrossRef]
    [Google Scholar]
  37. Sing, A., Roggenkamp, A., Geiger, A. M. & Heesemann, J. ( 2002a; ). Yersinia enterocolitica evasion of the host innate immune response by V antigen-induced IL-10 production of macrophages is abrogated in IL-10-deficient mice. J Immunol 168, 1315–1321.[CrossRef]
    [Google Scholar]
  38. Sing, A., Rost, D., Tvardovskaia, N., Roggenkamp, A., Wiedemann, A., Kirschning, C. J., Aepfelbacher, M. & Heesemann, J. ( 2002b; ). Yersinia V-antigen exploits toll-like receptor 2 and CD14 for interleukin 10-mediated immunosuppression. J Exp Med 196, 1017–1024.[CrossRef]
    [Google Scholar]
  39. Sing, A., Rost, D., Tvardovskaia, N., Roggenkamp, A., Geiger, A. M., Kirschning, C. J., Wiedemann, A., Aepfelbacher, M. & Heesemann, J. ( 2003; ). Mechanisms of Yersinia enterocolitica evasion of the host innate immune response by V antigen. Adv Exp Med Biol 529, 165–167.
    [Google Scholar]
  40. Song, C.-H., Lee, J.-S., Kim, H.-J., Park, J.-K., Paik, T.-H. & Jo, E.-K. ( 2003; ). Interleukin-8 is differentially expressed by human-derived monocytic cell line U937 infected with Mycobacterium tuberculosis H37Rv and Mycobacterium marinum. Infect Immun 71, 5480–5487.[CrossRef]
    [Google Scholar]
  41. Tardy, F., Homblé, F., Neyt, C., Wattiez, R., Cornelis, G. R., Ruysschaert, J. M. & Cabiaux, V. ( 1999; ). Yersinia enterocolitica type III secretion-translocation system: channel formation by secreted Yops. EMBO J 18, 6793–6799.[CrossRef]
    [Google Scholar]
  42. Tennant, S. M., Grant, T. H. & Robins-Browne, R. M. ( 2003; ). Pathogenicity of Yersinia enterocolitica biotype 1A. FEMS Immunol Med Microbiol 38, 127–137.[CrossRef]
    [Google Scholar]
  43. Trülzsch, K., Sporleder, T., Igwe, E. I., Rüssmann, H. & Heesemann, J. ( 2004; ). Contribution of the major secreted Yops of Yersinia enterocolitica O : 8 to pathogenicity in the mouse infection model. Infect Immun 72, 5227–5234.[CrossRef]
    [Google Scholar]
  44. Yamamoto, T., Hanawa, T., Ogata, S. & Kamiya, S. ( 1996; ). Identification and characterization of the Yersinia enterocolitica gsrA gene, which protectively responds to intracellular stress induced by macrophage phagocytosis and to extracellular environmental stress. Infect Immun 64, 2980–2987.
    [Google Scholar]
  45. Yamamoto, T., Hanawa, T., Ogata, S. & Kamiya, S. ( 1997; ). The Yersinia enterocolitica GsrA stress protein, involved in intracellular survival, is induced by macrophage phagocytosis. Infect Immun 65, 2190–2196.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46726-0
Loading
/content/journal/jmm/10.1099/jmm.0.46726-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error