1887

Abstract

Borderline oxacillin-resistant (BORSA) exhibit oxacillin MIC values of 1–8 μg ml, but lack , which encodes the low-affinity penicillin-binding protein (PBP)2a. The relationship of the BORSA phenotype with specific genetic backgrounds was assessed, as well as amino acid sequence variation in the normal PBP2. Among 38 BORSA, 26 had a common PFGE profile of genomic DNA, and were multilocus sequence type (ST)25. The other isolates were genetically diverse. Complete sequences were determined for three BORSA, corresponding to ST25, ST1 and ST47, which were selected on the basis of lacking -encoded -lactamase. The essential transpeptidase-domain-encoding segment of was also sequenced from seven additional ST25 isolates. Amino acid substitutions occurred in the transpeptidase domain of all BORSA, irrespective of clonal type. A Gln→Pro substitution was common to all ST25 BORSA, but most could be distinguished from one another by additional unique substitutions in the transpeptidase domain. The ST1 and ST47 isolates also possessed unique substitutions in the transpeptidase domain. Plasmid-mediated expression of from an ST25 or ST1 isolate in RN6390 increased its oxacillin MIC from 0.25 to 4 μg ml, while from a susceptible strain, ATCC 25923, had no effect. Therefore, different amino acid substitutions in PBP2 of diverse BORSA lineages contribute to borderline resistance. The predominant ST25 lineage was not related to any of the five clonal complexes that contain meticillin-resistant (MRSA), suggesting that ST25 cannot readily acquire -mediated resistance.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46700-0
2006-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/12/1675.html?itemId=/content/journal/jmm/10.1099/jmm.0.46700-0&mimeType=html&fmt=ahah

References

  1. Archer G. L. 1998; Staphylococcus aureus : a well-armed pathogen. Clin Infect Dis 26:1179–1181 [CrossRef]
    [Google Scholar]
  2. Asahi Y., Takeuchi Y., Ubukata K. 1999; Diversity of substitutions within or adjacent to conserved amino acid motifs of penicillin-binding protein 2X in cephalosporin-resistant Streptococcus pneumoniae isolates. Antimicrob Agents Chemother 43:1252–1255
    [Google Scholar]
  3. Baba T., Takeuchi F., Kuroda M. & 11 other authors; 2002; Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359:1819–1827 [CrossRef]
    [Google Scholar]
  4. Balslev U., Bremmelgaard A., Svejgaard E., Havstreym J., Westh H. 2005; An outbreak of borderline oxacillin-resistant Staphylococcus aureus (BORSA) in a dermatological unit. Microb Drug Resist 11:78–81 [CrossRef]
    [Google Scholar]
  5. Barg N., Chambers H., Kernodle D. 1991; Borderline susceptibility to antistaphylococcal penicillins is not conferred exclusively by the hyperproduction of beta-lactamase. Antimicrob Agents Chemother 35:1975–1979 [CrossRef]
    [Google Scholar]
  6. Boyle-Vavra S., Yin S., Challapalli M., Daum R. S. 2003; Transcriptional induction of the penicillin-binding protein 2 gene in Staphylococcus aureus by cell wall-active antibiotics oxacillin and vancomycin. Antimicrob Agents Chemother 47:1028–1036 [CrossRef]
    [Google Scholar]
  7. Bradley A. J., Green M. J. 2004; The importance of the nonlactating period in the epidemiology of intramammary infection and strategies for prevention. Vet Clin North Am Food Anim Pract 20:547–568 [CrossRef]
    [Google Scholar]
  8. Chriel M., Dietz H. H. 2003; Medication of production animals – cure of malfunctioning animals or production systems?. Acta Vet Scand 98:65–70
    [Google Scholar]
  9. Dessen A., Mouz N., Gordon E., Hopkins J., Dideberg O. 2001; Crystal structure of PBP2x from a highly penicillin-resistant Streptococcus pneumoniae clinical isolate: a mosaic framework containing 83 mutations. J Biol Chem 276:45106–45112 [CrossRef]
    [Google Scholar]
  10. Diep B. A., Gill S. R., Chang R. F. & 9 other authors; 2006; Complete genome sequence of USA 300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus . Lancet 367:731–739 [CrossRef]
    [Google Scholar]
  11. Enright M. C., Day N. P., Davies C. E., Peacock S. J., Spratt B. G. 2000; Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus . J Clin Microbiol 38:1008–1015
    [Google Scholar]
  12. Enright M. C., Robinson D. A., Randle G., Feil E. J., Grundmann H., Spratt B. G. 2002; The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci U S A 99:7687–7692 [CrossRef]
    [Google Scholar]
  13. Feil E. J., Enright M. C. 2004; Analyses of clonality and the evolution of bacterial pathogens. Curr Opin Microbiol 7:308–313 [CrossRef]
    [Google Scholar]
  14. Feil E. J., Cooper J. E., Grundmann H. & 9 other authors; 2003; How clonal is Staphylococcus aureus ?. J Bacteriol 185:3307–3316 [CrossRef]
    [Google Scholar]
  15. Feil E. J., Li B. C., Aanensen D. M., Hanage W. P., Spratt B. G. 2004; eburst: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186:1518–1530 [CrossRef]
    [Google Scholar]
  16. Fitzgerald J. R., Hartigan P. J., Meaney W. J., Smyth C. J. 2000; Molecular population and virulence factor analysis of Staphylococcus aureus from bovine intramammary infection. J Appl Microbiol 88:1028–1037 [CrossRef]
    [Google Scholar]
  17. Frere J. M., Joris B. 1985; Penicillin-sensitive enzymes in peptidoglycan biosynthesis. Crit Rev Microbiol 11:299–396
    [Google Scholar]
  18. Fuller E., Elmer C., Nattress F., Ellis R., Horne G., Cook P., Fawcett T. 2005; Beta-lactam resistance in Staphylococcus aureus cells that do not require a cell wall for integrity. Antimicrob Agents Chemother 49:5075–5080 [CrossRef]
    [Google Scholar]
  19. Ghuysen J. M. 1991; Serine beta-lactamases and penicillin-binding proteins. Annu Rev Microbiol 45:37–67 [CrossRef]
    [Google Scholar]
  20. Ghuysen J. M. 1994; Molecular structures of penicillin-binding proteins and beta-lactamases. Trends Microbiol 2:372–380 [CrossRef]
    [Google Scholar]
  21. Gillaspy A. F., Worrell V., Orvis J., Roe B. A., Dyer D. W., Iandolo J. J. 2006; The Staphylococcus aureus NCTC8325 genome. In Gram Positive Pathogens , 2nd edn. Edited by Fischetti V., Novick R. P., Ferretti J., Portnoy D., Rood J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Grebe T., Hakenbeck R. 1996; Penicillin-binding proteins 2b and 2x of Streptococcus pneumoniae are primary resistance determinants for different classes of beta-lactam antibiotics. Antimicrob Agents Chemother 40:829–834
    [Google Scholar]
  23. Hackbarth C. J., Kocagoz T., Kocagoz S., Chambers H. F. 1995; Point mutations in Staphylococcus aureus PBP 2 gene affect penicillin-binding kinetics and are associated with resistance. Antimicrob Agents Chemother 39:103–106 [CrossRef]
    [Google Scholar]
  24. Hartman B. J., Tomasz A. 1984; Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus . J Bacteriol 158:513–516
    [Google Scholar]
  25. Hiramatsu K., Cui L., Kuroda M., Ito T. 2001; The emergence and evolution of methicillin-resistant Staphylococcus aureus . Trends Microbiol 9:486–493 [CrossRef]
    [Google Scholar]
  26. Holden M. T., Feil E. J., Lindsay J. A. & 42 other authors; 2004; Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci U S A 101:9786–9791 [CrossRef]
    [Google Scholar]
  27. Ito T., Katayama Y., Asada K., Mori N., Tsutsumimoto K., Tiensasitorn C., Hiramatsu K. 2001; Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus . Antimicrob Agents Chemother 45:1323–1336 [CrossRef]
    [Google Scholar]
  28. Kernodle D. S., Classen D. C., Stratton C. W., Kaiser A. B. 1998; Association of borderline oxacillin-susceptible strains of Staphylococcus aureus with surgical wound infections. J Clin Microbiol 36:219–222
    [Google Scholar]
  29. Keseru J. S., Gal Z., Barabas G., Benko I., Szabo I. 2005; Investigation of beta-lactamases in clinical isolates of Staphylococcus aureus for further explanation of borderline methicillin-resistance. Chemotherapy 51:300–304 [CrossRef]
    [Google Scholar]
  30. Kuroda M., Ohta T., Uchiyama I. & 34 other authors; 2001; Whole genome sequencing of meticillin-resistant Staphylococcus aureus . Lancet 357:1225–1240 [CrossRef]
    [Google Scholar]
  31. Laible G., Spratt B. G., Hakenbeck R. 1991; Interspecies recombinational events during the evolution of altered PBP 2x genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae . Mol Microbiol 5:1993–2002 [CrossRef]
    [Google Scholar]
  32. Leski T. A., Tomasz A. 2005; Role of penicillin-binding protein 2 (PBP2) in the antibiotic susceptibility and cell wall cross-linking of Staphylococcus aureus : evidence for the cooperative functioning of PBP2, PBP4, and PBP2A. J Bacteriol 187:1815–1824 [CrossRef]
    [Google Scholar]
  33. Lindsay J. A., Holden M. T. 2004; Staphylococcus aureus : superbug, super genome?. Trends Microbiol 12:378–385 [CrossRef]
    [Google Scholar]
  34. Louie L., Matsumura S. O., Choi E., Louie M., Simor A. E. 2000; Evaluation of three rapid methods for detection of methicillin resistance in Staphylococcus aureus . J Clin Microbiol 38:2170–2173
    [Google Scholar]
  35. Louie L., Goodfellow J., Mathieu P., Glatt A., Louie M., Simor A. E. 2002; Rapid detection of methicillin-resistant staphylococci from blood culture bottles by using a multiplex PCR assay. J Clin Microbiol 40:2786–2790 [CrossRef]
    [Google Scholar]
  36. Massanari R. M., Pfaller M. A., Wakefield D. S., Hammons G. T., McNutt L. A., Woolson R. F., Helms C. M. 1988; Implications of acquired oxacillin resistance in the management and control of Staphylococcus aureus infections. J Infect Dis 158:702–709 [CrossRef]
    [Google Scholar]
  37. Massidda O., Montanari M. P., Varaldo P. E. 1992; Evidence for a methicillin-hydrolysing beta-lactamase in Staphylococcus aureus strains with borderline susceptibility to this drug. FEMS Microbiol Lett 71:223–227
    [Google Scholar]
  38. Massidda O., Montanari M. P., Mingoia M., Varaldo P. E. 1996; Borderline methicillin-susceptible Staphylococcus aureus strains have more in common than reduced susceptibility to penicillinase-resistant penicillins. Antimicrob Agents Chemother 40:2769–2774
    [Google Scholar]
  39. McDougal L. K., Thornsberry C. 1986; The role of beta-lactamase in staphylococcal resistance to penicillinase-resistant penicillins and cephalosporins. J Clin Microbiol 23:832–839
    [Google Scholar]
  40. McMurray L. W., Kernodle D. S., Barg N. L. 1990; Characterization of a widespread strain of methicillin-susceptible Staphylococcus aureus associated with nosocomial infections. J Infect Dis 162:759–762 [CrossRef]
    [Google Scholar]
  41. Mouz N., Di Guilmi A. M., Gordon E., Hakenbeck R., Dideberg O., Vernet T. 1999; Mutations in the active site of penicillin-binding protein PBP2x from Streptococcus pneumoniae . Role in the specificity for beta-lactam antibiotics. J Biol Chem 274:19175–19180 [CrossRef]
    [Google Scholar]
  42. Murakami K., Fujimura T., Doi M. 1994; Nucleotide sequence of the structural gene for the penicillin-binding protein 2 of Staphylococcus aureus and the presence of a homologous gene in other staphylococci. FEMS Microbiol Lett 117:131–136 [CrossRef]
    [Google Scholar]
  43. National Committee for Clinical Laboratory Standards 2003 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically: Approved Standard , 6th edn. NCCLS document M7-A6 Wayne PA: National Committee for Clinical Laboratory Standards;
    [Google Scholar]
  44. Novick R. P., Ross H. F., Projan S. J., Kornblum J., Kreiswirth B., Moghazeh S. 1993; Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12:3967–3975
    [Google Scholar]
  45. Pinho M. G., de Lencastre H., Tomasz A. 1998; Transcriptional analysis of the Staphylococcus aureus penicillin-binding protein 2 gene. J Bacteriol 180:6077–6081
    [Google Scholar]
  46. Pinho M. G., de Lencastre H., Tomasz A. 2001a; An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. Proc Natl Acad Sci U S A 98:10886–10891 [CrossRef]
    [Google Scholar]
  47. Pinho M. G., Filipe S. R., de Lencastre H., Tomasz A. 2001b; Complementation of the essential peptidoglycan transpeptidase function of penicillin-binding protein 2 (PBP2) by the drug resistance protein PBP2A in Staphylococcus aureus . J Bacteriol 183:6525–6531 [CrossRef]
    [Google Scholar]
  48. Rice K., Huesca M., Vaz D., McGavin M. J. 2001; Variance in fibronectin binding and fnb locus polymorphisms in Staphylococcus aureus : identification of antigenic variation in a fibronectin binding protein adhesin of the epidemic CMRSA-1 strain of methicillin-resistant S. aureus . Infect Immun 69:3791–3799 [CrossRef]
    [Google Scholar]
  49. Robinson D. A., Enright M. C. 2004; Multilocus sequence typing and the evolution of methicillin-resistant Staphylococcus aureus . Clin Microbiol Infect 10:92–97 [CrossRef]
    [Google Scholar]
  50. Simor A. E., Ofner-Agostini M., Bryce E., Green K., McGeer A., Mulvey M., Paton S. 2001; The evolution of methicillin-resistant Staphylococcus aureus in Canadian hospitals: 5 years of national surveillance. CMAJ 165:21–26
    [Google Scholar]
  51. Simor A. E., Ofner-Agostini M., Bryce E., McGeer A., Paton S., Mulvey M. R. 2002; Laboratory characterization of methicillin-resistant Staphylococcus aureus in Canadian hospitals: results of 5 years of National Surveillance, 1995–1999. J Infect Dis 186:652–660 [CrossRef]
    [Google Scholar]
  52. Smith E. M., Green L. E., Medley G. F. 7 other authors 2005; Multilocus sequence typing of intercontinental bovine Staphylococcus aureus isolates. J Clin Microbiol 43:4737–4743 [CrossRef]
    [Google Scholar]
  53. Suggs A. H., Maranan M. C., Boyle-Vavra S., Daum R. S. 1999; Methicillin-resistant and borderline methicillin-resistant asymptomatic Staphylococcus aureus colonization in children without identifiable risk factors. Pediatr Infect Dis J 18:410–414 [CrossRef]
    [Google Scholar]
  54. Tortosa P., Dubnau D. 1999; Competence for transformation: a matter of taste. Curr Opin Microbiol 2:588–592 [CrossRef]
    [Google Scholar]
  55. van Griethuysen A., Bes M., Etienne J., Zbinden R., Kluytmans J. 2001; International multicenter evaluation of latex agglutination tests for identification of Staphylococcus aureus . J Clin Microbiol 39:86–89 [CrossRef]
    [Google Scholar]
  56. Varaldo P. E. 1993; The ‘borderline methicillin-susceptible’ Staphylococcus aureus . J Antimicrob Chemother 31:1–4
    [Google Scholar]
  57. Varaldo P. E., Montanari M. P., Biavasco F., Manso E., Ripa S., Santacroce F. 1993; Survey of clinical isolates of Staphylococcus aureus for borderline susceptibility to antistaphylococcal penicillins. Eur J Clin Microbiol Infect Dis 12:677–682 [CrossRef]
    [Google Scholar]
  58. Yamazumi T., Marshall S. A., Wilke W. W., Diekema D. J., Pfaller M. A., Jones R. N. 2001; Comparison of the Vitek Gram-Positive Susceptibility 106 card and the MRSA-screen latex agglutination test for determining oxacillin resistance in clinical bloodstream isolates of Staphylococcus aureus . J Clin Microbiol 39:53–56 [CrossRef]
    [Google Scholar]
  59. Yoshida R., Kuwahara-Arai K., Baba T., Cui L., Richardson J. F., Hiramatsu K. 2003; Physiological and molecular analysis of a mec A-negative Staphylococcus aureus clinical strain that expresses heterogeneous methicillin resistance. J Antimicrob Chemother 51:247–255 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46700-0
Loading
/content/journal/jmm/10.1099/jmm.0.46700-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error