1887

Abstract

Screening for infections can be performed on urine samples and genital swabs using molecular techniques. A novel approach was developed that combined an automated extraction procedure, an automated liquid-handling system and real-time PCR to detect from urine or swabs. This novel real-time PCR approach was compared to the commercial Cobas Amplicor system on 628 specimens. In a retrospective analysis, 51 samples that tested positive using the Cobas assay were also positive with the real-time PCR, whereas the 49 samples negative with Cobas were also negative with the real-time PCR, for an overall agreement of 100 %. Among 528 prospective samples consecutively received at the authors' laboratory with a request for PCR, five PCR reactions were inhibited when tested with Cobas. These five inhibited samples were found negative with the real-time PCR. Among the remaining 523 samples, 45 (8.6 %) were positive with both methods, 476 (91 %) were negative with both methods, and 2 (0.4 %) were positive with Cobas but negative with the real-time PCR. Thus, when considering Cobas as the gold standard, the overall agreement was 99.6 %, the sensitivity of the real-time PCR was 95.7 % and the specificity was 100 %. The two discrepant samples were retested in parallel and were found negative with both methods. When testing a batch of 25 samples, both reagent costs and laboratory technician time were reduced with the new technique (7.30 euros per sample and 134 min) compared to Cobas (11.20 euros per sample and 232 min). Moreover, due to reduced organizational constraints, the median time from sample reception to result was only 24 h using the automated platform. Overall, this novel real-time PCR approach exhibited an excellent specificity and a sensitivity similar to that of Cobas Amplicor PCR for the detection of . Given its high throughput potential and low costs/laboratory technician time requirement, it may be useful for future use in large screening programs.

Keyword(s): Ct, threshold cycle
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46675-0
2006-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/12/1667.html?itemId=/content/journal/jmm/10.1099/jmm.0.46675-0&mimeType=html&fmt=ahah

References

  1. Arno J. N., Katz B. P., McBride R., Carty G. A., Batteiger B. E., Caine V. A., Jones R. B. 1994; Age and clinical immunity to infections with Chlamydia trachomatis . Sex Transm Dis 21:47–52 [CrossRef]
    [Google Scholar]
  2. Black C. M. 1997; Current methods of laboratory diagnosis of Chlamydia trachomatis infections. Clin Microbiol Rev 10:160–184
    [Google Scholar]
  3. Chernesky M. A., Martin D. H., Hook E. W., Willis D., Jordan J., Wang S., Lane J. R., Fuller D., Schachter J. 2005; Ability of new APTIMA CT and APTIMA GC assays to detect Chlamydia trachomatis and Neisseria gonorrhoeae in male urine and urethral swabs. J Clin Microbiol 43:127–131 [CrossRef]
    [Google Scholar]
  4. Egger M., Low N., Smith G. D., Lindblom B., Herrmann B. 1998; Screening for chlamydial infections and the risk of ectopic pregnancy in a county in Sweden: ecological analysis. BMJ 316:1776–1780 [CrossRef]
    [Google Scholar]
  5. Farencena A., Comanducci M., Donati M., Ratti G., Cevenini R. 1997; Characterization of a new isolate of Chlamydia trachomatis which lacks the common plasmid and has properties of biovar trachoma. Infect Immun 65:2965–2969
    [Google Scholar]
  6. Geisler W. M., Suchland R. J., Whittington W. L., Stamm W. E. 2001; Quantitative culture of Chlamydia trachomatis : relationship of inclusion-forming units produced in culture to clinical manifestations and acute inflammation in urogenital disease. J Infect Dis 184:1350–1354 [CrossRef]
    [Google Scholar]
  7. Geisler W. M., Suchland R. J., Whittington W. L., Stamm W. E. 2003; The relationship of serovar to clinical manifestations of urogenital Chlamydia trachomatis infection. Sex Transm Dis 30:160–165 [CrossRef]
    [Google Scholar]
  8. Gomes J. P., Borrego M. J., Atik B., Santo I., Azevedo J., Brito de S. A., Nogueira P., Dean D. 2005; Correlating Chlamydia trachomatis infectious load with urogenital ecological success and disease pathogenesis. Microbes Infect 8:16–26
    [Google Scholar]
  9. Gonzales G. F., Munoz G., Sanchez R. 8 other authors 2004; Update on the impact of Chlamydia trachomatis infection on male fertility. Andrologia 36:1–23 [CrossRef]
    [Google Scholar]
  10. Greub G., Lepidi H., Rovery C., Casalta J. P., Habib G., Collard F., Fournier P. E., Raoult D. 2005; Diagnosis of infectious endocarditis in patients undergoing valve surgery. Am J Med 118:230–238 [CrossRef]
    [Google Scholar]
  11. Hobson D., Karayiannis P., Byng R. E., Rees E., Tait I. A., Davies J. A. 1980; Quantitative aspects of chlamydial infection of the cervix. Br J Vener Dis 56:156–162
    [Google Scholar]
  12. Hu D., Hook E. W. III, Goldie S. J. 2004; Screening for Chlamydia trachomatis in women 15 to 29 years of age: a cost-effectiveness analysis. Ann Intern Med 141:501–513 [CrossRef]
    [Google Scholar]
  13. Jalal H., Stephen H., Al-Suwaine A., Sonnex C., Carne C. 2006a; The superiority of polymerase chain reaction over an amplified enzyme immunoassay for the detection of genital chlamydial infections. Sex Transm Infect 82:37–40 [CrossRef]
    [Google Scholar]
  14. Jalal H., Stephen H., Curran M. D., Burton J., Bradley M., Carne C. 2006b; Development and validation of a rotor-gene real-time PCR assay for detection, identification, and quantification of Chlamydia trachomatis in a single reaction. J Clin Microbiol 44:206–213 [CrossRef]
    [Google Scholar]
  15. Mahony J. B., Luinstra K. E., Sellors J. W., Chernesky M. A. 1993; Comparison of plasmid- and chromosome-based polymerase chain reaction assays for detecting Chlamydia trachomatis nucleic acids. J Clin Microbiol 31:1753–1758
    [Google Scholar]
  16. Morre S. A., van Valkengoed I., Moes R. M., Boeke A. J., Meijer C. J., van den Brule A. J. 1999; Determination of Chlamydia trachomatis prevalence in an asymptomatic screening population: performances of the LCx and COBAS Amplicor tests with urine specimens. J Clin Microbiol 37:3092–3096
    [Google Scholar]
  17. Ossewaarde J. M., Rieffe M., Rozenberg-Arska M., Ossenkoppele P. M., Nawrocki R. P., van Loon A. M. 1992; Development and clinical evaluation of a polymerase chain reaction test for detection of Chlamydia trachomatis . J Clin Microbiol 30:2122–2128
    [Google Scholar]
  18. Ostergaard L. 1999; Diagnosis of urogenital Chlamydia trachomatis infection by use of DNA amplification. APMIS Suppl 89:5–36
    [Google Scholar]
  19. Paavonen J., Eggert-Kruse W. 1999; Chlamydia trachomatis : impact on human reproduction. Hum Reprod Update 5:433–447 [CrossRef]
    [Google Scholar]
  20. Paavonen J., Puolakkainen M., Paukku M., Sintonen H. 1998; Cost–benefit analysis of first-void urine Chlamydia trachomatis screening program. Obstet Gynecol 92:292–298 [CrossRef]
    [Google Scholar]
  21. Peterson E. M., Markoff B. A., Schachter J., de la Maza L. M. 1990; The 7.5-kb plasmid present in Chlamydia trachomatis is not essential for the growth of this microorganism. Plasmid 23:144–148 [CrossRef]
    [Google Scholar]
  22. Quinn T. C., Welsh L., Lentz A., Crotchfelt K., Zenilman J., Newhall J., Gaydos C. 1996; Diagnosis by AMPLICOR PCR of Chlamydia trachomatis infection in urine samples from women and men attending sexually transmitted disease clinics. J Clin Microbiol 34:1401–1406
    [Google Scholar]
  23. Roosendaal R., Walboomers J. M., Veltman O. R., Melgers I., Burger C., Bleker O. P., MacClaren D. M., Meijer C. J., van den Brule A. J. 1993; Comparison of different primer sets for detection of Chlamydia trachomatis by the polymerase chain reaction. J Med Microbiol 38:426–433 [CrossRef]
    [Google Scholar]
  24. Rougemont M., Van S. M., Sahli R., Hinrikson H. P., Bille J., Jaton K. 2004; Detection of four Plasmodium species in blood from humans by 18S rRNA gene subunit-based and species-specific real-time PCR assays. J Clin Microbiol 42:5636–5643 [CrossRef]
    [Google Scholar]
  25. Roymans R. T., Onland G., Postma B. H. 1996; One-day detection of PCR amplified Chlamydia trachomatis DNA in clinical samples: ELISA versus Southern blot hybridisation. J Clin Pathol 49:581–583 [CrossRef]
    [Google Scholar]
  26. Schneede P., Tenke P., Hofstetter A. G. 2003; Sexually transmitted diseases (STDs) – a synoptic overview for urologists. Eur Urol 44:1–7 [CrossRef]
    [Google Scholar]
  27. Scholes D., Stergachis A., Heidrich F. E., Andrilla H., Holmes K. K., Stamm W. E. 1996; Prevention of pelvic inflammatory disease by screening for cervical chlamydial infection. N Engl J Med 334:1362–1366 [CrossRef]
    [Google Scholar]
  28. Senn L., Hammerschlag M. R., Greub G. 2005; Therapeutic approaches to Chlamydia infections. Expert Opin Pharmacother 6:2281–2290 [CrossRef]
    [Google Scholar]
  29. Stothard D. R., Williams J. A., Van Der Pol B., Jones R. B. 1998; Identification of a Chlamydia trachomatis serovar E urogenital isolate which lacks the cryptic plasmid. Infect Immun 66:6010–6013
    [Google Scholar]
  30. Van Der Pol B., Quinn T. C., Gaydos C. A. 8 other authors 2000; Multicenter evaluation of the AMPLICOR and automated COBAS AMPLICOR CT/NG tests for detection of Chlamydia trachomatis . J Clin Microbiol 38:1105–1112
    [Google Scholar]
  31. Van Der Pol B., Ferrero D. V., Buck-Barrington L. 10 other authors 2001; Multicenter evaluation of the BDProbeTec ET Syst for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine specimens, female endocervical swabs, and male urethral swabs. J Clin Microbiol 39:1008–1016 [CrossRef]
    [Google Scholar]
  32. van Doornum G. J., Schouls L. M., Pijl A., Cairo I., Buimer M., Bruisten S. 2001; Comparison between the LCx Probe system and the COBAS AMPLICOR system for detection of Chlamydia trachomatis and Neisseria gonorrhoeae infections in patients attending a clinic for treatment of sexually transmitted diseases in Amsterdam, The Netherlands. J Clin Microbiol 39:829–835 [CrossRef]
    [Google Scholar]
  33. Welte R., Kretzschmar M., van den Hoek J. A., Postma M. J. 2003; A population based dynamic approach for estimating the cost effectiveness of screening for Chlamydia trachomatis . Sex Transm Infect 79:426 [CrossRef]
    [Google Scholar]
  34. Welti M., Jaton K., Altwegg M., Sahli R., Wenger A., Bille J. 2003; Development of a multiplex real-time quantitative PCR assay to detect Chlamydia pneumoniae , Legionella pneumophila and Mycoplasma pneumoniae in respiratory tract secretions. Diagn Microbiol Infect Dis 45:85–95 [CrossRef]
    [Google Scholar]
  35. Whiley D. M., Sloots T. P. 2005; Comparison of three in-house multiplex PCR assays for the detection of Neisseria gonorrhoeae and Chlamydia trachomatis using real-time and conventional detection methodologies. Pathology 37:364–370 [CrossRef]
    [Google Scholar]
  36. Wilson J. S., Honey E., Templeton A., Paavonen J., Mardh P. A., Stray-Pedersen B. 2002; A systematic review of the prevalence of Chlamydia trachomatis among European women. Hum Reprod Update 8:385–394 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46675-0
Loading
/content/journal/jmm/10.1099/jmm.0.46675-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error