1887

Abstract

Between January and September 2003, 39 isolates of the family with phenotypically positive Vitek 1 extended-spectrum beta-lactamase (ESBL) test results were collected, originating from patients of two hospitals in Saxony, Germany. Plasmid DNA was isolated and screened by PCR for the presence of genes encoding beta-lactamases of SHV, TEM and CTX-M types. To differentiate ESBL and non-ESBL among SHV and TEM genes, detailed analysis of PCR products was performed. Twenty-four strains carried SHV-2, SHV-5 or SHV-12 genes. In a further 11 strains a CTX-M gene was detected. The CTX-M genes could be affiliated to the CTX-M-1 and CTX-M-9 cluster by RFLP analysis. In the case of four isolates, hyperproduction of the chromosomal beta-lactamase K1 was inferred, because genes of the above-mentioned types were not detected. The strains contained plasmid DNA between 45 and 160 kb in size. Common plasmid restriction patterns among SHV-5 producers provided evidence of horizontal spread. Twenty strains had a MIC for cefotaxime of ⩽4 mg l, 18 strains had the same MIC for ceftazidime, and nine strains had this MIC of >4 mg l for both antibiotics. The ESBL phenotypes often coincided with ciprofloxacin or gentamicin resistance.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46670-0
2007-02-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/2/241.html?itemId=/content/journal/jmm/10.1099/jmm.0.46670-0&mimeType=html&fmt=ahah

References

  1. Alobwede I., M'Zali F. H., Livermore D. M., Heritage J., Todd N., Hawkey P. M. 2003; CTX-M extended-spectrum β -lactamase arrives in the UK. J Antimicrob Chemother 51:470–471 [CrossRef]
    [Google Scholar]
  2. Ambler R. P., Coulson A. F. W., Frère J. M., Ghuysen J.-M., Joris B., Forsman M., Levesque R. C., Tiraby G., Waley S. G. 1991; A standard numbering scheme for the class A β -lactamases. Biochem J 276:269–272
    [Google Scholar]
  3. Babini G. S., Livermore D. M. 2000; Antimicrobial resistance amongst Klebsiella spp. collected from intensive care units in Western and Southern Europe in 1997–1998. J Antimicrob Chemother 45:183–189 [CrossRef]
    [Google Scholar]
  4. Babini G. S., Yuan M., Hall L. M. C., Livermore D. M. 2003; Variable susceptibility to piperacillin/tazobactam amongst Klebsiella spp. with extended-spectrum β -lactamases. J Antimicrob Chemother 51:605–612 [CrossRef]
    [Google Scholar]
  5. Backman A., Orvelid P., Vazquez J. A., Skold O., Olcen P. 2000; Complete sequence of a beta-lactamase-encoding plasmid in Neisseria meningitidis . Antimicrob Agents Chemother 44:210–212 [CrossRef]
    [Google Scholar]
  6. Bauernfeind A., Grimm H., Schweighart S. 1990; A new plasmidic cefotaximase in a clinical isolate of Escherichia coli . Infection 18:294–298 [CrossRef]
    [Google Scholar]
  7. Bauernfeind A., Rosenthal E., Eberlein E., Holley M., Schweighart S. 1993; Spread of Klebsiella pneumoniae producing SHV-5 beta-lactamase among hospitalized patients. Infection 21:18–22 [CrossRef]
    [Google Scholar]
  8. Bedenič B., Randegger C., Boras A., Hächler H. 2001; Comparison of five different methods for detection of SHV extended-spectrum β -lactamases. J Chemother 13:24–33 [CrossRef]
    [Google Scholar]
  9. Bonnet R. 2004; Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 48:1–14 [CrossRef]
    [Google Scholar]
  10. Bradford P. A. 2001; Extended-spectrum β -lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14:933–951 [CrossRef]
    [Google Scholar]
  11. Bush K. 2001; New β -lactamases in Gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis 32:1085–1089 [CrossRef]
    [Google Scholar]
  12. Bush K., Jacoby G. A., Medeiros A. A. 1995; A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211–1233 [CrossRef]
    [Google Scholar]
  13. Chang F.-Y., Siu L. K., Fung C.-P., Huang M.-H., Ho M. 2001; Diversity of SHV and TEM β -lactamases in Klebsiella pneumoniae : gene evolution in Northern Taiwan and two novel β -lactamases, SHV-25 and SHV-26. Antimicrob Agents Chemother 45:2407–2413 [CrossRef]
    [Google Scholar]
  14. Coque T. M., Oliver A., Perez-Diaz J. C., Baquero F., Canton R. 2002; Genes encoding TEM-4, SHV-2, and CTX-M-10 extended-spectrum beta-lactamases are carried by multiple Klebsiella pneumoniae clones in a single hospital. (Madrid: 1989 to 2000 Antimicrob Agents Chemother 46:500–510 [CrossRef]
    [Google Scholar]
  15. De Champs C., Chanal C., Sirot D., Baraduc R., Romaszko J. P., Bonnet R., Plaidy A., Boyer M., Carroy E. other authors 2004; Frequency and diversity of class A extended-spectrum beta-lactamases in hospitals of the Auvergne, France: a 2 year prospective study. J Antimicrob Chemother 54:634–639 [CrossRef]
    [Google Scholar]
  16. Deutsches Institut für Normung 1989 Methoden zur Empfindlichkeitsprüfung von mikrobiellen Krankheitserregern ( außer Mykobakterien ) gegen Chemotherapeutika . Teil 6: Bestimmung der minimalen Hemmkonzentration nach der Agar-Dilutionsmethode . DIN-58940–6 Berlin: Beuth-Verlag;
    [Google Scholar]
  17. Domenico P., Marx J. L., Schoch P. E., Cunha B. A. 1992; Rapid plasmid DNA isolation from mucoid Gram-negative bacteria. J Clin Microbiol 30:2859–2863
    [Google Scholar]
  18. Edelstein M., Pimkin M., Palagin I., Edelstein I., Stratchounski L. 2003; Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob Agents Chemother 47:3724–3732 [CrossRef]
    [Google Scholar]
  19. Elwell L. P., Falkow S. 1986; The characterization of R plasmids and the detection of plasmid-specified genes. In Antibiotics in Labaratory Medicine , 2nd edn. pp  683–721 Edited by Lorian V. Baltimore: Williams and Wilkins;
    [Google Scholar]
  20. Fournier B., Lu C. Y., Lagrange P. H., Krishnamoorthy R., Phillippon A. 1995; Point mutation in the Pribnow-box, the molecular basis of β -lactamase overproduction in Klebsiella oxytoca . Antimicrob Agents Chemother 39:1365–1368 [CrossRef]
    [Google Scholar]
  21. Geiss H. K., Mack D., Seifert H. 2003; Konsensuspapier zur Identifizierung von speziellen Resistenzmechanismen und zur Interpretation von Ergebnissen der Antibiotikaempfindlichkeitstestung bei grampositiven und gramnegativen Erregern. Der Mikrobiologe 13:222–239 (in German
    [Google Scholar]
  22. Gniadkowski M. 2001; Evolution and epidemiology of extended-spectrum β -lactamases (ESBLs) and ESBL-producing microorganisms. Clin Microbiol Infect 7:597–608 [CrossRef]
    [Google Scholar]
  23. Gniadkowski M., Schneider I., Jungwirth R., Hryniewicz W., Bauernfeind A. 1998a; Ceftazidime resistant Enterobacteriaceae isolates from three Polish hospitals: identification of three novel TEM- and SHV-5-type extended-spectrum β -lactamases. Antimicrob Agents Chemother 42:514–520
    [Google Scholar]
  24. Gniadkowski M., Schneider I., Palucha A., Jungwirth R., Mikiewicz B., Bauernfeind A. 1998b; Cefotaxime-resistant Enterobacteriaceae isolates from a hospital in Warsaw, Poland: identification of a new CTX-M-3 cefotaxime-hydrolyzing beta-lactamase that is closely related to the CTX-M-1/MEN-1 enzyme. Antimicrob Agents Chemother 42:827–832
    [Google Scholar]
  25. Hall T. A. 1999; BioEdit: a user-friendly biologic sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  26. Heritage J., M'Zali F. H., Gascoyne-Binzi D., Hawkey P. M. 1999; Evolution and spread of SHV extended-spectrum β -lactamases in Gram-negative bacteria. J Antimicrob Chemother 44:309–318 [CrossRef]
    [Google Scholar]
  27. Howard C., van Daal A., Kelly G., Schooneveldt J., Nimmo G., Giffard P. M. 2002; Identification and minisequencing-based discrimination of SHV β -lactamases in nosocomial infection-associated Klebsiella pneumoniae in Brisbane, Australia. Antimicrob Agents Chemother 46:659–664 [CrossRef]
    [Google Scholar]
  28. Jacoby G. A., Medeiros A. A. 1991; More extended-spectrum β -lactamases. Antimicrob Agents Chemother 35:1697–1704 [CrossRef]
    [Google Scholar]
  29. Jeong S. H., Kim W. M., Chang C. L., Kim J. M., Lee K., Chong Y., Hwang H. Y., Baek Y. W., Chung H. K. other authors 2001; Neonatal intensive care unit outbreak caused by a strain of Klebsiella oxytoca resistant to aztreonam due to overproduction of chromosomal beta-lactamase. J Hosp Infect 48:281–288 [CrossRef]
    [Google Scholar]
  30. Kim Y.-K., Pai H., Lee H.-J., Park S.-E., Choi E.-H., Kim J., Kim J. H., Kim E. C. 2002; Bloodstream infections by extended-spectrum β -lactamase-producing Escherichia coli and Klebsiella pneumoniae in children: epidemiology and clinical outcome. Antimicrob Agents Chemother 46:1481–1491 [CrossRef]
    [Google Scholar]
  31. Kim J., Lim Y.-M., Rheem I., Lee Y., Lee J. C., Seol S. Y., Lee Y. C., Cho D. T. 2005; CTX-M and SHV-12 beta-lactamases are the most common extended-spectrum enzymes in clinical isolates of Escherichia coli and Klebsiella pneumoniae collected from 3 university hospitals within Korea. FEMS Microbiol Lett 245:93–98 [CrossRef]
    [Google Scholar]
  32. Kliebe C., Nies B. A., Meyer J. F., Tolxdorff-Neutzling R. M., Wiedemann B. 1985; Evolution of plasmid-coded resistance to broad-spectrum cephalosporins. Antimicrob Agents Chemother 28:302–307 [CrossRef]
    [Google Scholar]
  33. Leverstein-van Hall M. A., Fluit A. C., Paauw A., Box A. T. A., Brisse S., Verhoef J. 2002; Evaluation of the Etest ESBL and the BD Phoenix, VITEK 1, and VITEK 2 automated instruments for detection of extended-spectrum beta-lactamases in multiresistant Escherichia coli and Klebsiella spp. J Clin Microbiol 40:3703–3711 [CrossRef]
    [Google Scholar]
  34. Liu C. P., Wang N. Y., Lee C. M., Weng L. C., Tseng H. K., Liu C. W., Chiang C. S., Huang F. Y. 2004; Nosocomial and community-acquired Enterobacter cloacae bloodstream infection: risk factors for and prevalence of SHV-12 in multiresistant isolates in a medical centre. J Hosp Infect 58:63–77 [CrossRef]
    [Google Scholar]
  35. Livermore D. M. 1995; β -Lactamases in laboratory and clinical resistance. Clin Microbiol Rev 8:557–584
    [Google Scholar]
  36. Mammeri H., Laurans G., Eveillard M., Castelain S., Eb F. 2001; Coexistence of SHV-4- and TEM-24-producing Enterobacter aerogenes strains before a large outbreak of TEM-24-producing strains in a French hospital. J Clin Microbiol 39:2184–2190 [CrossRef]
    [Google Scholar]
  37. Mulvey M. R., Bryce E., Boyd D., Ofner-Agostini M., Christianson S., Simor A. E., Paton S. 2004; Ambler class A extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella spp. in Canadian hospitals. Antimicrob Agents Chemother 48:1204–1214 [CrossRef]
    [Google Scholar]
  38. Ndugulile F., Jureen R., Harthug S., Urassa W., Langeland N. 2005; Extended spectrum β -lactamases among Gram-negative bacteria of nosocomial origin from an intensive care unit of a tertiary health facility in Tanzania. BMC Infect Dis 5:86 [CrossRef]
    [Google Scholar]
  39. Nüesch-Inderbinen M., Hächler H., Kayser F. H. 1996; Detection of genes coding for extended-spectrum SHV beta-lactamases in clinical isolates by a molecular genetic method, and comparison with the E test. Eur J Clin Microbiol Infect Dis 15:398–402 [CrossRef]
    [Google Scholar]
  40. Nüesch-Inderbinen M., Kayser F. H., Hächler H. 1997; Survey and molecular genetics of SHV β -lactamases in Enterobacteriaceae in Switzerland: two novel enzymes, SHV-11 and SHV-12. Antimicrob Agents Chemother 41:943–949
    [Google Scholar]
  41. Paterson D. L., Ko W.-C., von Gottenberg A., Casellas J. M., Mulazimoglu L., Klugman K. P., Bonomo R. A., Rice L. B., McCormack J. G., Yu V. L. 2001; Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended-spectrum β -lactamases: implications for the clinical microbiology laboratory. J Clin Microbiol 39:2206–2212 [CrossRef]
    [Google Scholar]
  42. Paterson D. L., Hujer K. M., Hujer A. M., Yeiser B., Bonomo M. D., Rice L. B., Bonomo R. A. International Klebsiella Study Group 2003; Extended-spectrum beta-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type beta-lactamases. Antimicrob Agents Chemother 47:3554–3560 [CrossRef]
    [Google Scholar]
  43. Péduzzi J., Barthélémy M., Tiwar K., Mattioni D., Labia R. 1989; Structural features related to hydrolytic activity against ceftazidime of plasmid-mediated SHV-type CAZ-5 beta-lactamase. Antimicrob Agents Chemother 33:2160–2163 [CrossRef]
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Thomson K. S., Moland E. S. 2001; Cefepime, piperacillin-tazobactam and the inoculum effect in tests with extended-spectrum beta-lactamase-producing Enterobacteriaceae . Antimicrob Agents Chemother 45:3548–3554 [CrossRef]
    [Google Scholar]
  46. Witte W., Mielke M. 2003; β -Laktamasen mit breitem Wirkungsspektrum: Grundlagen, Epidemiologie, Schlußfolgerungen für die Prävention. Bundesgesundheitsbl-Gesundheitsforsch-Gesundheitsschutz 46:881–890 (in German [CrossRef]
    [Google Scholar]
  47. Wu T.-L., Siu L. K., Su L.-H., Lauderdale T. L., Lin F. M., Leu H.-S., Lin T.-Y., Ho M. 2001; Outer membrane protein change combined with co-existing TEM-1 and SHV-1 β -lactamases lead to false identification of ESBL-producing Klebsiella pneumoniae . J Antimicrob Chemother 47:755–761 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46670-0
Loading
/content/journal/jmm/10.1099/jmm.0.46670-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error