1887

Abstract

CaNdt80p, the homologue of the transcription factor ScNdt80p, has been identified as a positive regulator of , which encodes an efflux pump involved in drug resistance in . To investigate the involvement of the putative DNA-binding domain of CaNdt80p in drug resistance, chimeras of CaNdt80p and ScNdt80p were constructed. Interestingly, the DNA-binding domain of ScNdt80p could functionally complement that of CaNdt80p to activate in . Consistently, CaNdt80p containing a mutation in the DNA-binding domain failed to activate in . Furthermore, a copy of with the same mutation also failed to complement the drug-sensitive phenotype caused by a null mutation in . Thus, the DNA-binding domain of CaNdt80p is critical for its function in drug resistance in .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46650-0
2006-10-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/10/1403.html?itemId=/content/journal/jmm/10.1099/jmm.0.46650-0&mimeType=html&fmt=ahah

References

  1. Abi-Said, D., Anaissie, E., Uzun, O., Raad, I., Pinzcowski, H. & Vartivarian, S. ( 1997; ). The epidemiology of hematogenous candidiasis caused by different Candida species. Clin Infect Dis 24, 1122–1128.[CrossRef]
    [Google Scholar]
  2. Beck-Sague, C. & Jarvis, W. R. ( 1993; ). Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980–1990. National Nosocomial Infections Surveillance System. J Infect Dis 167, 1247–1251.[CrossRef]
    [Google Scholar]
  3. Chen, Y. C., Chang, S. C., Sun, C. C., Yang, L. S., Hsieh, W. C. & Luh, K. T. ( 1997; ). Secular trends in the epidemiology of nosocomial fungal infections at a teaching hospital in Taiwan, 1981 to 1993. Infect Control Hosp Epidemiol 18, 369–375.[CrossRef]
    [Google Scholar]
  4. Chen, C. G., Yang, Y. L., Shih, H. I., Su, C. L. & Lo, H. J. ( 2004; ). CaNdt80 is involved in drug resistance in Candida albicans by regulating CDR1. Antimicrob Agents Chemother 48, 4505–4512.[CrossRef]
    [Google Scholar]
  5. Christianson, T. W., Sikorski, R. S., Dante, M., Shero, J. H. & Hieter, P. ( 1992; ). Multifunctional yeast high-copy-number shuttle vectors. Gene 110, 119–122.[CrossRef]
    [Google Scholar]
  6. Chu, S. & Herskowitz, I. ( 1998; ). Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol Cell 1, 685–696.[CrossRef]
    [Google Scholar]
  7. Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P. O. & Herskowitz, I. ( 1998; ). The transcriptional program of sporulation in budding yeast. Science 282, 699–705.[CrossRef]
    [Google Scholar]
  8. Coste, A. T., Karababa, M., Ischer, F., Bille, J. & Sanglard, D. ( 2004; ). TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot Cell 3, 1639–1652.[CrossRef]
    [Google Scholar]
  9. Edwards, E. J. J. ( 1990; ). Candida species. In Principles and Practice of Infectious Diseases, pp. 1943–1958. Edited by G. L. Mandell, R. G. Douglas & J. E. Bennett. London: Churchill-Livingstone.
  10. Gillum, A. M., Tsay, E. Y. & Kirsch, D. R. ( 1984; ). Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198, 179–182.[CrossRef]
    [Google Scholar]
  11. Hung, C. C., Chen, Y. C., Chang, S. C., Luh, K. T. & Hsieh, W. C. ( 1996; ). Nosocomial candidemia in a university hospital in Taiwan. J Formos Med Assoc 95, 19–28.
    [Google Scholar]
  12. Karababa, M., Coste, A. T., Rognon, B., Bille, J. & Sanglard, D. ( 2004; ). Comparison of gene expression profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Antimicrob Agents Chemother 48, 3064–3079.[CrossRef]
    [Google Scholar]
  13. Kofron, M., Demel, T., Xanthos, J. & 7 other authors ( 1999; ). Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors. Development 126, 5759–5770.
    [Google Scholar]
  14. Kohler, J. R. & Fink, G. R. ( 1996; ). Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development. Proc Natl Acad Sci U S A 93, 13223–13228.[CrossRef]
    [Google Scholar]
  15. Lopez-Ribot, J. L., McAtee, R. K., Lee, L. N., Kirkpatrick, W. R., White, T. C., Sanglard, D. & Patterson, T. F. ( 1998; ). Distinct patterns of gene expression associated with development of fluconazole resistance in serial Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob Agents Chemother 42, 2932–2937.
    [Google Scholar]
  16. Marger, M. D. & Saier, M. H., Jr ( 1993; ). A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci 18, 13–20.[CrossRef]
    [Google Scholar]
  17. Michaelis, S. & Berkower, C. ( 1995; ). Sequence comparison of yeast ATP-binding cassette proteins. Cold Spring Harb Symp Quant Biol 60, 291–307.[CrossRef]
    [Google Scholar]
  18. Montano, S. P., Cote, M. L., Fingerman, I., Pierce, M., Vershon, A. K. & Georgiadis, M. M. ( 2002; ). Crystal structure of the DNA-binding domain from Ndt80, a transcriptional activator required for meiosis in yeast. Proc Natl Acad Sci U S A 99, 14041–14046.[CrossRef]
    [Google Scholar]
  19. Pak, J. & Segall, J. ( 2002; ). Regulation of the premiddle and middle phases of expression of the NDT80 gene during sporulation of Saccharomyces cerevisiae. Mol Cell Biol 22, 6417–6429.[CrossRef]
    [Google Scholar]
  20. Pfaller, M. A., Jones, R. N., Messer, S. A., Edmond, M. B. & Wenzel, R. P. ( 1998; ). National surveillance of nosocomial blood stream infection due to species of Candida other than Candida albicans: frequency of occurrence and antifungal susceptibility in the SCOPE Program. Diagn Microbiol Infect Dis 30, 121–129.[CrossRef]
    [Google Scholar]
  21. Pfaller, M. A., Jones, R. N., Doern, G. V., Sader, H. S., Messer, S. A., Houston, A., Coffman, S. & Hollis, R. J. ( 2000; ). Bloodstream infections due to Candida species: SENTRY antimicrobial surveillance program in North America and Latin America, 1997–1998. Antimicrob Agents Chemother 44, 747–751.[CrossRef]
    [Google Scholar]
  22. Pfaller, M. A., Diekema, D. J., Messer, S. A., Boyken, L. & Hollis, R. J. ( 2003; ). Activities of fluconazole and voriconazole against 1,586 recent clinical isolates of Candida species determined by broth microdilution, disk diffusion, and Etest methods: report from the ARTEMIS Global Antifungal Susceptibility Program, 2001. J Clin Microbiol 41, 1440–1446.[CrossRef]
    [Google Scholar]
  23. Sanglard, D., Ischer, F., Monod, M. & Bille, J. ( 1996; ). Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother 40, 2300–2305.
    [Google Scholar]
  24. Schaller, M., Bein, M., Korting, H. C., Baur, S., Hamm, G., Monod, M., Beinhauer, S. & Hube, B. ( 2003; ). The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect Immun 71, 3227–3234.[CrossRef]
    [Google Scholar]
  25. Schmitt, M. E., Brown, T. A. & Trumpower, B. L. ( 1990; ). A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18, 3091–3092.[CrossRef]
    [Google Scholar]
  26. Sherman, F. ( 2002; ). Getting started with yeast. Methods Enzymol 350, 3–41.
    [Google Scholar]
  27. Tapia, C., Leon, E. & Palavecino, E. ( 2003; ). Antifungal susceptibility of yeasts by Etest. Comparison of 3 media. Rev Med Chil 131, 299–302 (in Spanish).
    [Google Scholar]
  28. Vanden Bossche, H., Warnock, D. W., Dupont, B. & 7 other authors ( 1994; ). Mechanisms and clinical impact of antifungal drug resistance. J Med Vet Mycol 32, 189–202.
    [Google Scholar]
  29. Yang, Y. L. & Lo, H. J. ( 2001; ). Mechanisms of antifungal agent resistance. J Microbiol Immunol Infect 34, 79–86.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46650-0
Loading
/content/journal/jmm/10.1099/jmm.0.46650-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error