Quantitative detection of in fish tissue by real-time PCR using self-quenched, fluorogenic primers Free

Abstract

In this study a real-time PCR assay using self-quenched primers labelled with a single fluorophore for the detection of was developed. Probe specificity was confirmed by amplification of 16 strain templates and by the lack of a PCR product with 26 non- strains. With a pure culture of , the assay was linear over a range of 0.5 pg to 50 ng and was able to detect 16 c.f.u. per reaction. A similar sensitivity was observed in DNA extracted from a mixture of and fish tissue. Results using artificially inoculated tissues and diseased fish from outbreaks indicated that the assay can provide sensitive species-specific detection and quantification of in fish tissue.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46647-0
2007-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/3/323.html?itemId=/content/journal/jmm/10.1099/jmm.0.46647-0&mimeType=html&fmt=ahah

References

  1. Adams A., Thompson K. 1990; Development of an enzyme-linked immunosorbent assay (ELISA) for the detection of Aeromonas salmonicida in fish tissue. J Aquat Anim Health 2:281–288 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  4. Austin B., Austin D. A. (editors) 1999 Bacterial Fish Pathogens: Diseases of Farmed and Wild Fish , 3rd edn. Chichester: Springer – Praxis;
    [Google Scholar]
  5. Best E. L., Fox A. J., Frost J. A., Bolton F. J. 2005; Real-time single-nucleotide polymorphism profiling using TaqMan technology for rapid recognition of Campylobacter jejuni clonal complexes. J Med Microbiol 54:919–925 [CrossRef]
    [Google Scholar]
  6. Byers H. K., Gudkovs N., Crane M. S. J. 2002; PCR-based assays for the fish pathogen Aeromonas salmonicida . I. Evaluation of three PCR primer sets for detection and identification. Dis Aquat Org 49:129–138 [CrossRef]
    [Google Scholar]
  7. Del Cerro A., Marquez I., Guijarro J. A. 2002; Simultaneous detection of Aeromonas salmonicida , Flavobacterium psychrophilum , and Yersinia ruckeri , three major fish pathogens, by multiplex PCR. Appl Environ Microbiol 68:5177–5180 [CrossRef]
    [Google Scholar]
  8. De Medici D., Croci L., Delibato E., Di Pasquale S., Filetici E., Toti L. 2003; Evaluation of DNA extraction methods for use in combination with SYBR green I real-time PCR to detect Salmonella enterica serotype enteritidis in poultry. Appl Environ Microbiol 69:3456–3461 [CrossRef]
    [Google Scholar]
  9. Gilroy D., Smith P. 2003; Application-dependent, laboratory-based validation of an enzyme-linked immunosorbent assay for Aeromonas salmonicida . Aquaculture 217:23–38 [CrossRef]
    [Google Scholar]
  10. Gustafson C. E., Thomas C. J., Trust T. J. 1992; Detection of Aeromonas salmonicida from fish by using polymerase chain reaction amplification of the virulence surface array protein gene. Appl Environ Microbiol 58:3816–3825
    [Google Scholar]
  11. Hiney M., Olivier G. 1999; Furunculosis ( Aeromonas salmonicida ). In Fish Diseases and Disorders , vol. 3: Viral, Bacterial and Fungal Infections pp  341–425 Edited by Woo P. T. K., Bruno D. W. Wallingford: CABI Publishing;
    [Google Scholar]
  12. Hiney M., Dawson M. T., Heery D. M., Smith P. R., Gannon F., Powell R. 1992; DNA probe for Aeromonas salmonicida . Appl Environ Microbiol 58:1039–1042
    [Google Scholar]
  13. Lowe B., Avila H. A., Bloom F. R., Gleeson M., Kusser W. 2003; Quantitation of gene expression in neural precursors by reverse-transcription polymerase chain reaction using self-quenched, fluorogenic primers. Anal Biochem 315:95–105 [CrossRef]
    [Google Scholar]
  14. Martínez-Murcia A. J., Saavedra M. J., Chacón M. R., Guarro J., Stackebrandt E., Figueras M. J. 2005; Phenotypic, genotypic, and phylogenetic discrepancies to differentiate Aeromonas salmonicida from Aeromonas bestiarum . Int Microbiol 8:259–269
    [Google Scholar]
  15. McCarthy D. H., Roberts R. J. 1980; Furunculosis of fish – the present state of our knowledge. In Advances in Aquatic Microbiology pp  293–341 Edited by Droop M. R., Jannasch H. W. London: Academic Press;
    [Google Scholar]
  16. Mills S. D., Boland A., Sory M. P., van der Smissen P., Kerbourch C., Finlay B. B., Cornelis G. R. 1997; Yersinia enterocolitica induces apoptosis in macrophages by a process requiring functional type III secretion and translocation mechanisms and involving YopP, presumably acting as an effector protein. Proc Natl Acad Sci U S A 94:12638–12643 [CrossRef]
    [Google Scholar]
  17. Miyata M., Inglis V., Aoki T. 1996; Rapid identification of Aeromonas salmonicida subspecies salmonicida by the polymerase chain reaction. Aquaculture 141:13–24 [CrossRef]
    [Google Scholar]
  18. Mooney J., Powell E., Clabby C., Powell R. 1995; Detection of Aeromonas salmonicida in wild Atlantic salmon using a specific DNA probe test. Dis Aquat Org 21:131–135 [CrossRef]
    [Google Scholar]
  19. Nazarenko I., Lowe B., Darfler M., Ikonomi P., Schuster D., Rashtchian A. 2002a; Multiplex quantitative PCR using self-quenched primers labeled with a single fluorophore. Nucleic Acids Res 30:e37 [CrossRef]
    [Google Scholar]
  20. Nazarenko I., Pires R., Lowe B., Obaidy M., Rashtchian A. 2002b; Effect of primary and secondary structure of oligodeoxyribonucleotides on the fluorescent properties of conjugated dyes. Nucleic Acids Res 30:2089–2195 [CrossRef]
    [Google Scholar]
  21. O'Brien D., Mooney J., Ryan D., Powell E., Hiney M., Smith P. R., Powell R. 1994; Detection of Aeromonas salmonicida , causal agent of furunculosis in salmonid fish, from the tank effluent of hatchery-reared atlantic salmon smolts. Appl Environ Microbiol 60:3874–3877
    [Google Scholar]
  22. Sharkey F. H., Banat I. M., Marchant R. 2004; Detection and quantification of gene expression in environmental bacteriology. Appl Environ Microbiol 70:3795–3806 [CrossRef]
    [Google Scholar]
  23. Sørum H., Kvello J. H., Hastein T. 1993; Occurrence and stability of plasmids in Aeromonas salmonicida ss salmonicida isolated from salmonids with furunculosis. Dis Aquat Org 16:199–206 [CrossRef]
    [Google Scholar]
  24. Suzuki K., Sasaki J., Uramoto M., Nakase T., Komagata K. 1996; Agromyces mediolanus sp. nov., nom. rev., comb. nov., a species for “ Corynebacterium mediolanum ” Mamoli 1939 and for some aniline-assimilating bacteria which contain 2,4-diaminobutyric acid in the cell wall peptidoglycan. Int J Syst Bacteriol 46:88–93 [CrossRef]
    [Google Scholar]
  25. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  26. Xi C., Balberg M., Boppart S. A., Raskin L. 2003; Use of DNA and peptide nucleic acid molecular beacons for detection and quantification of rRNA in solution and in whole cells. Appl Environ Microbiol 69:5673–5678 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46647-0
Loading
/content/journal/jmm/10.1099/jmm.0.46647-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed