1887

Abstract

To understand better the mechanisms of fluoroquinolone resistance in , fluoroquinolone-resistant mutants isolated from ATCC 29212 by stepwise selection with sparfloxacin (SPX) and norfloxacin (NOR) were analysed. The results showed the following. (i) In general, fluoroquinolone-resistance mechanisms in are similar to those in other Gram-positive bacteria, such as and , namely, mutants with amino acid changes in both GyrA and ParC exhibited high fluoroquinolone resistance, and single GyrA mutants and a single ParC mutant were more resistant to SPX and NOR, respectively, than the parent strain, indicating that the primary targets of SPX and NOR in are DNA gyrase and topoisomerase IV, respectively. (ii) Alterations in GyrB (ΔKGA, residues 395–397) and ParE (Glu-459 to Lys) were associated with fluoroquinolone resistance in some mutants. Moreover, the facts that the NOR MIC, but not the SPX MIC, decreased in the presence of multidrug efflux pump inhibitors, that NOR accumulation decreased in the cells, and that the EmeA mRNA expression level did not change, strongly suggested that a NorA-like efflux pump, rather than EmeA, was involved in resistance to NOR.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46636-0
2006-10-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/10/1395.html?itemId=/content/journal/jmm/10.1099/jmm.0.46636-0&mimeType=html&fmt=ahah

References

  1. Brisse S., Fluit A. C., Wagner U., Heisig P., Milatovic D., Verhoef J., Scheuring S., Köhrer K., Schmitz F.-J. 1999; Association of alteration in ParC and GyrA proteins with resistance of clinical isolates of Enterococcus faecium to nine different fluoroquinolones. Antimicrob Agents Chemother 43:2513–2516
    [Google Scholar]
  2. Celesk R. A., Robillard N. J. 1989; Factors influencing the accumulation of ciprofloxacin in Pseudomonas aeruginosa . Antimicrob Agents Chemother 33:1921–1926 [CrossRef]
    [Google Scholar]
  3. Davis D. R., McAlpine J. B., Pazoles C. J. & 7 other authors; 2001; Enterococcus faecalis multi-drug resistance transporters: application for antibiotic discovery. J Mol Microbiol Biotechnol 3:179–184
    [Google Scholar]
  4. Endicott J. A., Ling V. 1989; The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem 58:137–171 [CrossRef]
    [Google Scholar]
  5. Fournier B., Hooper D. C. 1998; Mutations in topoisomerase IV and DNA gyrase of Staphylococcus aureus : novel pleiotropic effects on quinolone and coumarin activity. Antimicrob Agents Chemother 42:121–128 [CrossRef]
    [Google Scholar]
  6. Gensberg K., Jin Y. F., Piddock L. J. V. 1995; A novel gyrB mutation in a fluoroquinolone-resistant clinical isolate of Salmonella typhimurium . FEMS Microbiol Lett 132:57–60 [CrossRef]
    [Google Scholar]
  7. Gill M. J., Brenwald N. P., Wise R. 1999; Identification of an efflux pump gene pmrA , associated with fluoroquinolone resistance in Streptococcus pneumoniae . Antimicrob Agents Chemother 43:187–189 [CrossRef]
    [Google Scholar]
  8. Gonzalez M. A., Moranchel A. H., Duran S., Pichardo A., Magana J. L., Painter B., Forrest A., Drusano G. L. 1985; Multiple-dose pharmacokinetics of ciprofloxacin administered intravenously to normal volunteers. Antimicrob Agents Chemother 28:235–239 [CrossRef]
    [Google Scholar]
  9. Hudson M. C., Curtiss R. III 1990; Regulation of expression of Streptococcus mutans genes important to virulence. Infect Immun 58:464–470
    [Google Scholar]
  10. Jonas B. M., Murray B. E., Weinstock G. M. 2001; Characterization of emeA , a norA homolog and multidrug resistance efflux pump, in Enterococcus faecalis . Antimicrob Agents Chemother 45:3574–3579 [CrossRef]
    [Google Scholar]
  11. Kaatz G. W., McAleese F., Seo S. M. 2005; Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob Agents Chemother 49:1857–1864 [CrossRef]
    [Google Scholar]
  12. Kanematsu E., Deguchi T., Yasuda M., Kawamura T., Nishino Y., Kawada Y. 1998; Alterations in the GyrA subunit of DNA gyrase and the ParC subunit of DNA topoisomerase IV associated with quinolone resistance in Enterococcus faecalis . Antimicrob Agents Chemother 42:433–435
    [Google Scholar]
  13. Korten V., Huang W. M., Murray B. E. 1994; Analysis by PCR and direct DNA sequencing of gyrA mutations associated with fluoroquinolone resistance in Enterococcus faecalis . Antimicrob Agents Chemother 38:2091–2094 [CrossRef]
    [Google Scholar]
  14. Leavis H. L., Willems R. J. L., Top J., Bonten M. J. M. 2006; High-level ciprofloxacin resistance from point mutations in gyrA and parC confined to global hospital-adapted clonal lineage CC17 of Enterococcus faecium . J Clin Microbiol 44:1059–1064 [CrossRef]
    [Google Scholar]
  15. Lee E.-W., Huda M. N., Kuroda T., Mizushima T., Tsuchiya T. 2003; EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis . Antimicrob Agents Chemother 47:3733–3738 [CrossRef]
    [Google Scholar]
  16. Marrer E., Satoh A. T., Johnson M. M., Piddock L. J. V., Page M. G. P. 2006; Global transcriptome analysis of the response of a fluoroquinolone-resistant Streptococcus pneumoniae mutant and its parent to ciprofloxacin. Antimicrob Agents Chemother 50:269–278 [CrossRef]
    [Google Scholar]
  17. National Committee for Clinical Laboratory Standards 2003; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard . , 6th edn.M7–A6 Wayne, PA: National Committee for Clinical Laboratory Standards;
  18. Ng E. Y. W., Trucksis M., Hooper D. C. 1994; Quinolone reistance mediated by norA : physiologic characterization and relationship to flqB , a quinolone resistance locus on the Staphylococcus aureus chromosome. Antimicrob Agents Chemother 38:1345–1355 [CrossRef]
    [Google Scholar]
  19. Onodera Y., Okuda J., Tanaka M., Sato K. 2002; Inhibitory activities of quinolones against DNA gyrase and topoisomerase IV of Enterococcus faecalis . Antimicrob Agents Chemother 46:1800–1804 [CrossRef]
    [Google Scholar]
  20. Oyamada Y., Ito H., Fujimoto K., Asada R., Niga T., Okamoto R., Inoue M., Yamagishi J.-I. 2006; Combination of known and unknown mechanisms confers high-level resistance to fluoroquinolones in Enterococcus faecium . J Med Microbiol 55:729–736 [CrossRef]
    [Google Scholar]
  21. Pan X.-S., Fisher L. M. 1997; Targeting of DNA gyrase in Streptococcus pneumoniae by sparfloxacin: selective targeting of gyrase and topoisomerase IV by quinolones. Antimicrob Agents Chemother 41:471–474
    [Google Scholar]
  22. Pan X.-S., Fisher L. M. 1998; DNA gyrase and topoisomerase IV are dual targets of clinafloxacin action in Streptococcus pneumoniae . Antimicrob Agents Chemother 42:2810–2816
    [Google Scholar]
  23. Pan X.-S., Hamlyn P. J., Talens-Visconti R., Alovero F. L., Manzo R. H., Fisher L. M. 2002; Small-colony mutants of Staphylococcus aureus allow selection of gyrase-mediated resistance to dual-target fluoroquinolones. Antimicrob Agents Chemother 46:2498–2506 [CrossRef]
    [Google Scholar]
  24. Piddock L. J. V. 1999; Mechanisms of fluoroquinolone resistance: an update 1994–1998. Drugs 58 (Suppl. 2):11–18
    [Google Scholar]
  25. Piddock L. J. V., Johnson M. M., Simjee S., Pumbe L. 2002; Expression of the efflux pump gene pmrA in fluoroquinolone-resistant and -susceptible clinical isolates of Streptococcus pneumoniae . Antimicrob Agents Chemother 46:808–812 [CrossRef]
    [Google Scholar]
  26. Robertson G. T., Doyle T. B., Lynch A. S. 2005; Use of an efflux-deficient Streptococcus pneumoniae strain panel to identify ABC-class multidrug transporters involved in intrinsic resistance to antimicrobial agents. Antimicrob Agents Chemother 49:4781–4783 [CrossRef]
    [Google Scholar]
  27. Robicsek A., Strahilevitz J., Jacoby G. A., Macielag M., Abbanat D., Park C. H., Bush K., Hooper D. C. 2006; Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 12:83–88 [CrossRef]
    [Google Scholar]
  28. Ruiz J. 2003; Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J Antimicrob Chemother 51:1109–1117 [CrossRef]
    [Google Scholar]
  29. Tankovic J., Mahjoubi F., Courvalin P., Duval J., Leclercq R. 1996; Development of fluoroquinolone resistance in Enterococcus faecalis and role of mutations in the DNA gyrase gyrA gene. Antimicrob Agents Chemother 40:2558–2561
    [Google Scholar]
  30. Tankovic J., Bachoual R., Ouabdesselam S., Boudjadja A., Soussy C.-J. 1999; In-vitro activity of moxifloxacin against fluoroquinolone-resistant strains of aerobic Gram-negative bacilli and Enterococcus faecalis . J Antimicrob Chemother 43 (Suppl. B):19–23 [CrossRef]
    [Google Scholar]
  31. Tran J. H., Jacoby G. A. 2002; Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci U S A 99:5638–5642 [CrossRef]
    [Google Scholar]
  32. Truong-Bolduc Q. C., Dunman P. M., Strahilevitz J., Projan S. J., Hooper D. C. 2005; MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus . J Bacteriol 187:2395–2405 [CrossRef]
    [Google Scholar]
  33. Truong-Bolduc Q. C., Strahilevitz J., Hooper D. C. 2006; NorC, a new efflux pump regulated by MgrA of Staphylococcus aureus . Antimicrob Agents Chemother 50:1104–1107 [CrossRef]
    [Google Scholar]
  34. Yamagishi J.-I., Kojima T., Oyamada Y., Fujimoto K., Hattori H., Nakamura S., Inoue M. 1996; Alterations in the DNA topoisomerase IV grlA gene responsible for quinolone resistance in Staphylococcus aureus . Antimicrob Agents Chemother 40:1157–1163
    [Google Scholar]
  35. Yoshida H., Bogaki M., Nakamura M., Nakamura S. 1990a; Quinolone resistance-determing region in the DNA gyrase gyrA gene of Escherichia coli . Antimicrob Agents Chemother 34:1271–1272 [CrossRef]
    [Google Scholar]
  36. Yoshida H., Bogaki M., Nakamura S., Ubukata K., Konno M. 1990b; Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J Bacteriol 172:6942–6949
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46636-0
Loading
/content/journal/jmm/10.1099/jmm.0.46636-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error