1887

Abstract

Multidrug-resistant (MDREC) expressing AmpC -lactamases have emerged as a cause of opportunistic infections in dogs. Following a cluster of extraintestinal infections caused by two distinct clonal groups (CGs) of -producing MDREC, a 12-month infection control study was undertaken at a veterinary teaching hospital in Brisbane, Australia. Swabs from the rectum of hospitalized dogs (=780), hospital staff (=16) and the hospital environment (=220) were plated onto selective agar to obtain multidrug-resistant (MDR) coliforms. These were then tested by multiplex PCR for , and the class 1 integron-associated gene cassette for rapid identification of MDREC CG 1 (positive for all three genes) and CG 2 (positive for and only). A total of 16.5 % of the dog rectal swabs and 4.1 % of the hospital environmental swabs yielded MDREC, and on the basis of multiplex PCR, PFGE and plasmid profiling, these were confirmed to belong to either CG 1 or CG 2. Both CG 1 and CG 2 isolates were obtained from clinical cases of extraintestinal infection and rectal swabs from hospitalized dogs over the same period of time, whereas only CG 1 isolates were obtained from the hospital environment. Both CGs were prevalent during the first 6 months, but only CG 2 was isolated during the second 6 months of the study. Two isolates obtained from rectal swabs of staff working in the hospital belonged to CG 2, with one of the isolates possessing the same REDP as nine isolates from dogs, including six isolates associated with cases of extraintestinal infection. CG 1 isolates belonged to serotypes O162 : H−, OR : H− or Ont : H−, whereas CG 2 isolates belonged to O153 : HR, OR : HR or OR : H34. These results confirm that in this particular outbreak, canine MDREC were highly clonal and CG 2 MDREC may colonize both humans and dogs.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46598-0
2006-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/8/1125.html?itemId=/content/journal/jmm/10.1099/jmm.0.46598-0&mimeType=html&fmt=ahah

References

  1. Bauernfeind A., Chong Y., Schweighart S. 1989; Extended broad spectrum β -lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection 17:316–321 [CrossRef]
    [Google Scholar]
  2. Bettelheim K. A., Thompson C. J. 1987; New method of serotyping Escherichia coli : implementation and verification. J Clin Microbiol 25:781–786
    [Google Scholar]
  3. Bohm H., Karch H. 1992; DNA fingerprinting of Escherichia coli O157 : H7 strains by pulsed-field gel electrophoresis. J Clin Microbiol 30:2169–2172
    [Google Scholar]
  4. Carattoli A., Lovari S., Franco A., Cordaro G., Di Matteo P., Battisti A. 2005; Extended-spectrum β -lactamases in Escherichia coli isolated from dogs and cats in Rome, Italy, from 2001 to 2003. Antimicrob Agents Chemother 49:833–835 [CrossRef]
    [Google Scholar]
  5. Chart H., Perry N. T. 2004; The serological response to Verocytotoxigenic Escherichia coli in patients with haemolytic uraemic syndrome. Lett Appl Microbiol 38:351–354 [CrossRef]
    [Google Scholar]
  6. Chen J., Griffiths M. W. 1998; PCR differentiation of Escherichia coli from other Gram-negative bacteria using primers derived from the nucleotide sequences flanking the gene encoding the universal stress protein. Lett Appl Microbiol 27:369–371 [CrossRef]
    [Google Scholar]
  7. Fernandez-Beros M. E., Kissel V., Aguero M. E., Figueroa G., D'Ottone K., Prado V., Cabello F. 1988; Further characterization of Escherichia coli O153 : H45, an ETEC serotype disseminated in Chile. Can J Microbiol 34:85–88 [CrossRef]
    [Google Scholar]
  8. Guardabassi L., Schwarz S., Lloyd D. H. 2004; Pet animals as reservoirs of antimicrobial-resistant bacteria. J Antimicrob Chemother 54:321–332 [CrossRef]
    [Google Scholar]
  9. Hossain A., Reisbig M. D., Hanson N. D. 2004; Plasmid-encoded functions compensate for the biological cost of AmpC overexpression in a clinical isolate of Salmonella typhimurium . J Antimicrob Chemother 53:964–970 [CrossRef]
    [Google Scholar]
  10. Johnson J. R., Stell A. L., Delavari P. 2001; Canine feces as a reservoir of extraintestinal pathogenic Escherichia coli . Infect Immun 69:1306–1314 [CrossRef]
    [Google Scholar]
  11. Johnson J. R., Kuskowski M. A., Owens K., Gajewski A., Winokur P. L. 2003; Phylogenetic origin and virulence genotype in relation to resistance to fluoroquinolones and/or extended-spectrum cephalosporins and cephamycins among Escherichia coli isolates from animals and humans. J Infect Dis 188:759–768 [CrossRef]
    [Google Scholar]
  12. Kado C. I., Liu S. T. 1981; Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145:1365–1373
    [Google Scholar]
  13. Landgren M., Oden H., Kuhn I., Osterlund A., Kahlmeter G. 2005; Diversity among 2481 Escherichia coli from women with community-acquired lower urinary tract infections in 17 countries. J Antimicrob Chemother 55:928–937 [CrossRef]
    [Google Scholar]
  14. Leflon-Guibout V., Jurand C., Bonacorsi S., Espinasse F., Guelfi M. C., Duportail F., Heym B., Bingen E., Nicolas-Chanoine M. H. 2004; Emergence and spread of three clonally related virulent isolates of CTX-M-15-producing Escherichia coli with variable resistance to aminoglycosides and tetracycline in a French geriatric hospital. Antimicrob Agents Chemother 48:3736–3742 [CrossRef]
    [Google Scholar]
  15. Manges A. R., Johnson J. R., Foxman B., O'Bryan T. T., Fullerton K. E., Riley L. W. 2001; Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. N Engl J Med 345:1007–1013 [CrossRef]
    [Google Scholar]
  16. Navarro F., Perez-Trallero E., Marimon J. M., Aliaga R., Gomariz M., Mirelis B. 2001; CMY-2-producing Salmonella enterica , Klebsiella pneumoniae , Klebsiella oxytoca , Proteus mirabilis and Escherichia coli strains isolated in Spain; (October 1999–December 2000 J Antimicrob Chemother 48:383–389 [CrossRef]
    [Google Scholar]
  17. National Committee for Clinical Laboratory Standards 2003 Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals: Approved Standard – Second Edition M31-A2 Wayne, PA: National Committee for Clinical Laboratory Standards;
    [Google Scholar]
  18. Pérez-Pérez F. J., Hanson N. D. 2002; Detection of plasmid-mediated AmpC β -lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40:2153–2162 [CrossRef]
    [Google Scholar]
  19. Ramchandani M., Manges A. R., DebRoy C., Smith S. P., Johnson J. R., Riley L. W. 2005; Possible animal origin of human-associated, multidrug-resistant, uropathogenic Escherichia coli . Clin Infect Dis 40:251–257 [CrossRef]
    [Google Scholar]
  20. Ratnayake S., Weintraub A., Widmalm G. 1994; Structural studies of the enterotoxigenic Escherichia coli (ETEC) O153 O-antigenic polysaccharide. Carbohydr Res 265:113–120 [CrossRef]
    [Google Scholar]
  21. Sanchez S., Stevenson M. M. A., Hudson C. R., Maier M., Buffington T., Dam Q., Maurer J. J. 2002; Characterization of multidrug-resistant Escherichia coli isolates associated with nosocomial infections in dogs. J Clin Microbiol 40:3586–3595 [CrossRef]
    [Google Scholar]
  22. Sidjabat H. E., Townsend K. M., Hanson N. D., Bell J., Stokes H. W., Gobius K. S., Moss S. M., Trott D. J. 2006; Identification of bla CMY-7 and associated plasmid-mediated resistance genes in multidrug-resistant Escherichia coli isolated from dogs at a veterinary teaching hospital in Australia. J Antimicrob Chemother 57:840–848 [CrossRef]
    [Google Scholar]
  23. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B. 1995; Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239
    [Google Scholar]
  24. Trott D. J., Filippich L. J., Bensink J. C., Downs M. T., McKenzie S. E., Townsend K. M., Moss S. M., Chin J. J. 2004; Canine model for investigating the impact of oral enrofloxacin on commensal coliforms and colonization with multidrug-resistant Escherichia coli . J Med Microbiol 53:439–443 [CrossRef]
    [Google Scholar]
  25. Winokur P. L., Vonstein D. L., Hoffman L. J., Uhlenhopp E. K., Doern G. V. 2001; Evidence for transfer of CMY-2 AmpC β -lactamase plasmids between Escherichia coli and Salmonella isolates from food animals and humans. Antimicrob Agents Chemother 45:2716–2722 [CrossRef]
    [Google Scholar]
  26. Wolk M., Valinsky L., Sompolinsky D., Sechter I., Schmidt H., Tetry S., Agmon V. 2004; Endemic occurrence of infections by multidrug-resistant Escherichia coli of four unique serotypes in the elderly population of Israel. FEMS Microbiol Lett 239:249–254 [CrossRef]
    [Google Scholar]
  27. Yan J. J., Hong C. Y., Ko W. C., Chen Y. J., Tsai S. H., Chuang C. L., Wu J. J. 2004; Dissemination of bla CMY-2 among Escherichia coli isolates from food animals, retail ground meats, and humans in southern Taiwan. Antimicrob Agents Chemother 48:1353–1356 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46598-0
Loading
/content/journal/jmm/10.1099/jmm.0.46598-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error