1887

Abstract

causes neonatal meningitis frequently complicated with multiple brain abscesses. During central nervous system infection in the neonatal rat model, previous studies have documented many bacteria-filled macrophages within the neonatal rat brain and abscesses. Previous studies have also shown that is taken up by, survives phagolysosomal fusion and replicates in macrophages and . In this study, in order to elucidate genetic and cellular factors contributing to persistence, a combinatory technique of differential fluorescence induction and transposon mutagenesis was employed to isolate genes induced while inside macrophages. Several banks of mutants were subjected to a series of enrichments to select for  : : transposon fusion into genes that are turned off but expressed when intracellular within macrophages. Further screening identified several mutants attenuated in their recovery from macrophages compared with the wild-type. A mutation within an homologue caused significant attenuation in uptake and hypervirulence , resulting in death within 24 h. Furthermore, analysis of the immunoregulatory interleukin (IL)-10/IL-12 cytokine response during infection suggested that expression may alter this response. A better understanding of the bacteria–macrophage interaction at the molecular level and its contribution to brain abscess formation will assist in developing preventative and therapeutic strategies.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46596-0
2006-12-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/12/1631.html?itemId=/content/journal/jmm/10.1099/jmm.0.46596-0&mimeType=html&fmt=ahah

References

  1. Afendra, A. S. & Drainas, C. ( 1987; ). Expression and stability of a recombinant plasmid in Zymomonas mobilis and Escherichia coli. J Gen Microbiol 133, 127–134.
    [Google Scholar]
  2. Agrawai, D. & Mahapatra, A. K. ( 2005; ). Vertically acquired neonatal Citrobacter brain abscess – case report and review of the literature. J Clin Neurosci 12, 188–190.[CrossRef]
    [Google Scholar]
  3. Badger, J. L., Stins, M. F. & Kim, K. S. ( 1999; ). Citrobacter freundii invades and replicates in human brain microvascular endothelial cells. Infect Immun 67, 4208–4215.
    [Google Scholar]
  4. Doran, T. I. ( 1999; ). The role of Citrobacter in clinical disease of children: review. Clin Infect Dis 28, 384–394.[CrossRef]
    [Google Scholar]
  5. Feferbaum, R., Diniz, E. M. A., Valente, M. & 7 other authors ( 2000; ). Brain abscess by Citrobacter diversus in infancy: case report. Arq Neuropsiquiatr 58, 736–740.[CrossRef]
    [Google Scholar]
  6. Flesch, I. E. A., Hess, J. H., Oswald, I. P. & Kaufmann, S. H. E. ( 1994; ). Growth inhibition of Mycobacterium bovis by IFN-γ stimulated macrophages: regulation by endogenous tumor necrosis factor-α and by IL-10. Int Immunol 6, 693–700.[CrossRef]
    [Google Scholar]
  7. Flynn, J. L. & Chan, J. ( 2001; ). Immunology of tuberculosis. Annu Rev Immunol 19, 93–129.[CrossRef]
    [Google Scholar]
  8. Galán, J. E. & Collmer, A. ( 1999; ). Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284, 1322–1328.[CrossRef]
    [Google Scholar]
  9. Grazia Cappiello, M., Sutterwala, F. S., Trinchieri, G., Mosser, D. M. & Ma, X. ( 2001; ). Suppression of IL-12 transcription in macrophages following Fcγ receptor ligation. J Immunol 166, 4498–4506.[CrossRef]
    [Google Scholar]
  10. Hirsch, C. S., Hussain, R., Toossi, Z., Dawood, G., Shahid, F. & Ellner, J. J. ( 1996; ). Cross-modulation by transforming growth factor β in human tuberculosis: suppression of antigen-driven blastogenesis and interferon γ production. Proc Natl Acad Sci U S A 93, 3193–3198.[CrossRef]
    [Google Scholar]
  11. Kim, K. S., Itabashi, H., Gemski, P., Sadoff, J., Warren, R. L. & Cross, A. S. ( 1992; ). The K1 capsule is the critical determinant in the development of Escherichia coli meningitis in the rat. J Clin Invest 90, 897–905.[CrossRef]
    [Google Scholar]
  12. Kline, M. W. ( 1988; ). Citrobacter meningitis and brain abscess in infancy: epidemiology, pathogenesis, and treatment. J Pediatr 113, 430–434.[CrossRef]
    [Google Scholar]
  13. Kline, M. W. & Kaplan, S. L. ( 1987; ). Citrobacter diversus and neonatal brain abscess. Pediatr Neurol 3, 178–180.[CrossRef]
    [Google Scholar]
  14. Kline, M. W., Kaplan, S. L., Hawkins, E. P. & Mason, E. O., Jr ( 1988; ). Pathogenesis of brain abscess formation in an infant rat model of Citrobacter diversus bacteremia and meningitis. J Infect Dis 157, 106–112.[CrossRef]
    [Google Scholar]
  15. Liaudet, L., Deb, A., Pacher, P., Mabley, J. G., Murthy, K. G. K., Salzman, A. L. & Szabó, C. ( 2002; ). The flagellin–TLR5 axis: therapeutic opportunities. Drug News Perspect 15, 397–409.[CrossRef]
    [Google Scholar]
  16. Lockman, H. A. & Curtiss, R., III ( 1990; ). Salmonella typhimurium mutants lacking flagella or motility remain virulent in BALB/c mice. Infect Immun 58, 137–143.
    [Google Scholar]
  17. Lucey, D. R., Clerici, M. & Shearer, M. ( 1996; ). Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clin Microbiol Rev 9, 532–562.
    [Google Scholar]
  18. Malakooti, J., Komeda, Y. & Matsumura, P. ( 1989; ). DNA sequence analysis, gene product identification, and localization of flagellar motor components of Escherichia coli. J Bacteriol 171, 2728–2734.
    [Google Scholar]
  19. Malakooti, J., Ely, B. & Matsumura, P. ( 1994; ). Molecular characterization, nucleotide sequence, and expression of the fliO, fliP, fliQ, and fliR genes of Escherichia coli. J Bacteriol 176, 189–197.
    [Google Scholar]
  20. Malstrom, C. & James, S. ( 1998; ). Inhibition of murine splenic and mucosal lymphocyte function by enteric bacterial products. Infect Immun 66, 3120–3127.
    [Google Scholar]
  21. Ottenhoff, T. H. M., Verreck, F. A. W., Lichtenauer-Kaligis, E. G. R., Hoeve, M. A., Sanal, O. & Van Dissel, J. T. ( 2002; ). Genetics, cytokines and human infectious disease: lessons from weakly pathogenic mycobacteria and salmonellae. Nat Genet 32, 97–105.[CrossRef]
    [Google Scholar]
  22. Prais, D., Nussinovitch, M., Harel, L. & Amir, J. ( 2003; ). Citrobacter koseri (diversus) meningitis in an otherwise healthy adolescent. Scand J Infect Dis 35, 202–204.[CrossRef]
    [Google Scholar]
  23. Renier, D., Flandin, C., Hirsch, E. & Hirsch, J. F. ( 1988; ). Brain abscesses in neonates. A study of 30 cases. J Neurosurg 69, 877–882.[CrossRef]
    [Google Scholar]
  24. Saez-Llorens, X. & McCracken, G. H., Jr ( 1998; ). Enterobacter. In Textbook of Pediatric Infectious Diseases, pp. 1279–1282. Edited by R. D. Feigin & J. D. Cherry. Philadelphia: W.B. Saunders.
  25. Schmitt, C. K., Ikeda, J. S., Darnell, S. C., Watson, P. R., Bispham, J., Wallis, T. S., Weinstein, D. L., Metcalf, E. S. & O'Brien, A. D. ( 2001; ). Absence of all components of the flagellar export and synthesis machinery differentially alters virulence of Salmonella enterica serovar Typhimurium in models of typhoid fever, survival in macrophages, tissue culture invasiveness, and calf enterocolitis. Infect Immun 69, 5619–5625.[CrossRef]
    [Google Scholar]
  26. Schmitz, J., Assenmacher, M. & Radbruch, A. ( 1993; ). Regulation of T helper cell cytokine expression: functional dichotomy of antigen-presenting cells. Eur J Immunol 23, 191–199.[CrossRef]
    [Google Scholar]
  27. Sher, A. & Coffman, R. L. ( 1992; ). Regulation of immunity to parasites by T cells and T cell-derived cytokines. Annu Rev Immunol 10, 385–409.[CrossRef]
    [Google Scholar]
  28. Stretton, S., Techkarnjanaruk, S., McLennan, A. M. & Goodman, A. E. ( 1998; ). Use of green fluorescent protein to tag and investigate gene expression in marine bacteria. Appl Environ Microbiol 64, 2554–2559.
    [Google Scholar]
  29. Sundström, C. & Nilsson, K. ( 1976; ). Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int J Cancer 17, 565–577.[CrossRef]
    [Google Scholar]
  30. Sutterwala, F. S., Noel, G. J., Salgame, P. & Mosser, D. M. ( 1998; ). Reversal of proinflammatory responses by ligating the macrophage Fcγ receptor type I. J Exp Med 188, 217–222.[CrossRef]
    [Google Scholar]
  31. Tang, L.-M., Chen, S.-T. & Lui, T.-N. ( 1994; ). Citrobacter meningitis in adults. Clin Neurol Neurosurg 96, 52–57.[CrossRef]
    [Google Scholar]
  32. Townsend, S. M., Pollack, H. A., Gonzalez-Gomez, I., Shimada, H. & Badger, J. L. ( 2003; ). Citrobacter koseri brain abscess in the neonatal rat: survival and replication within human and rat macrophages. Infect Immun 71, 5871–5880.[CrossRef]
    [Google Scholar]
  33. Trinchieri, G. ( 1997; ). Cytokines acting on or secreted by macrophages during intracellular infection (IL-10, IL-12, IFN-γ). Curr Opin Immunol 9, 17–23.[CrossRef]
    [Google Scholar]
  34. Van Asten, F. J. A. M., Hendriks, H. G. C. J. M., Koninkx, J. F. J. G., Van der Zeijst, B. A. M. & Gaastra, W. ( 2000; ). Inactivation of the flagellin gene of Salmonella enterica serotype Enteritidis strongly reduces invasion into differentiated Caco-2 cells. FEMS Microbiol Lett 185, 175–179.[CrossRef]
    [Google Scholar]
  35. Wagner, D., Sangari, F. J., Kim, S., Petrofsky, M. & Bermudez, L. E. ( 2002; ). Mycobacterium avium infection of macrophages results in progressive suppression of interleukin-12 production in vitro and in vivo. J Leukoc Biol 71, 80–88.
    [Google Scholar]
  36. Weiser, J. N. & Gotschlich, E. C. ( 1991; ). Outer membrane protein A (OmpA) contributes to serum resistance and pathogenicity of Escherichia coli K-1. Infect Immun 59, 2252–2258.
    [Google Scholar]
  37. Williams, W. W., Mariano, J., Spurrier, M. & 7 other authors ( 1984; ). Nosocomial meningitis due to Citrobacter diversus in neonates: new aspects of the epidemiology. J Infect Dis 150, 229–235.[CrossRef]
    [Google Scholar]
  38. Wilson, M., Seymour, R. & Henderson, B. ( 1998; ). Bacterial perturbation of cytokine networks. Infect Immun 66, 2401–2409.
    [Google Scholar]
  39. Zaidi, T. S., Fleiszig, S. M. J., Preston, M. J., Goldberg, J. B. & Pier, G. B. ( 1996; ). Lipopolysaccharide outer core is a ligand for corneal cell binding and ingestion of Pseudomonas aeruginosa. Invest Ophthalmol Vis Sci 37, 976–986.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46596-0
Loading
/content/journal/jmm/10.1099/jmm.0.46596-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error