1887

Abstract

The bacterial community (microbiota) that inhabits the gut of humans appears to be an important source of antigens that drive the chronic immunological processes characteristic of Crohn's disease (CD) and ulcerative colitis (UC). Most of the members of the microbiota have not yet been cultured, but nucleic-acid-based methods of detection and enumeration can provide information about the community. This investigation used these methods to obtain information about the bacteria associated with mucosal surfaces in the gut of 20 CD and 15 UC patients. Biopsies were collected from inflamed and non-inflamed sites in the intestines of newly diagnosed, untreated patients. Biopsies were also collected from several intestinal sites of 14 healthy subjects. The bacterial collections associated with the biopsies were analysed by generating PCR/denaturing gradient gel electrophoresis (DGGE) profiles, the preparation of 16S rRNA gene clone libraries, and qualitative PCR to detect specific groups of bacteria. The total numbers of bacteria associated with the biopsies were determined by real-time quantitative PCR. DGGE profiles generated from the terminal ileum and various colonic regions were characteristic of each individual but differed between subjects. DGGE profiles and 16S rRNA gene libraries showed that the bacteria associated with inflamed and non-inflamed tissues did not differ. UC patients had more bacteria associated with biopsies than did CD patients (<0.01). Statistical analysis of the composition of 16S rRNA gene libraries showed that the bacterial collections in UC and CD patients differed (<0.05). Unclassified members of the phylum Bacteroidetes were more prevalent in CD than in UC patients. Therefore, the types and numbers of bacteria associated with biopsy samples were distinctly different for UC and CD patients. The observations made in this study should permit targeting of specific bacteriological abnormalities in investigations of the pathogenesis of inflammatory bowel diseases and provide targets for medical interventions.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46498-0
2006-08-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/8/1141.html?itemId=/content/journal/jmm/10.1099/jmm.0.46498-0&mimeType=html&fmt=ahah

References

  1. Beckwith, C. S., Franklin, C. L., Hook, R. R., Besch-Williford, C. L. & Riley, L. K. ( 1997; ). Fecal PCR assay for diagnosis of Helicobacter infection in laboratory rodents. J Clin Microbiol 35, 1620–1623.
    [Google Scholar]
  2. Bernhard, A. E. & Field, K. G. ( 2000; ). Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. Appl Environ Microbiol 66, 1587–1594.[CrossRef]
    [Google Scholar]
  3. Bouma, G. & Strober, W. ( 2003; ). The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 3, 521–533.[CrossRef]
    [Google Scholar]
  4. Collins, S. M., McHugh, K., Croitoru, K. & Howorth, M. ( 2003; ). The establishment of a national tissue bank for inflammatory bowel disease research in Canada. Can J Gastroenterol 17, 107–109.
    [Google Scholar]
  5. Corfield, A. P., Myerscough, N., Bradfield, N. & 8 other authors ( 1996; ). Colonic mucins in ulcerative colitis: evidence for loss of sulphation. Glycoconj J 13, 809–822.[CrossRef]
    [Google Scholar]
  6. Deplancke, B., Hristova, K. R., Oakley, H. A., McCracken, V. J., Aminov, R., Mackie, R. I. & Gaskins, H. R. ( 2000; ). Molecular ecological analysis of the succession and diversity of sulfate-reducing bacteria in the mouse gastrointestinal tract. Appl Environ Microbiol 66, 2166–2174.[CrossRef]
    [Google Scholar]
  7. Dove, C. H., Wang, S. Z., Price, S. B., Phelps, C. J., Lyerly, D. M., Wilkinds, T. D. & Johnson, J. L. ( 1990; ). Molecular characterization of the Clostridium difficile toxin A gene. Infect Immun 58, 480–488.
    [Google Scholar]
  8. Gibson, G. R., Cummings, J. H. & Macfarlane, G. T. ( 1991; ). Growth and activities of sulphate-reducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol Ecol 86, 103–112.[CrossRef]
    [Google Scholar]
  9. Good, I. J. ( 1953; ). The population frequencies of species and the estimation of population parameters. Biometrica 40, 237–264.[CrossRef]
    [Google Scholar]
  10. Handelsman, J. ( 2004; ). Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68, 669–685.[CrossRef]
    [Google Scholar]
  11. Hughes, J. B. & Bohannan, B. J. M. ( 2004; ). Application of ecological diversity statistics in microbial ecology. In Molecular Microbial Ecology Manual, vol. 2, 2nd edn, pp. 1321–1344. Edited by G. A. Kowalchuk, F. J. de Bruijn, I. M. Head, A. D. L Akkermans & J. D. van Elsas. Dordrecht: Kluwer Academic Publishers.
  12. Kleessen, B., Kroesen, A. J., Buhr, H. J. & Blaut, M. ( 2002; ). Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol 37, 1034–1041.[CrossRef]
    [Google Scholar]
  13. Kok, R. G., De Waal, A., Schut, F., Welling, G. W., Weenk, G. & Hellingwerf, K. J. ( 1996; ). Specific detection and analysis of a probiotic Bifidobacterium strain in infant feces. Appl Environ Microbiol 62, 3668–3672.
    [Google Scholar]
  14. Lepage, P., Seksik, P., Sutren, M., de la Cochetiere, M. F., Jian, R., Marteau, P. & Doré, J. ( 2005; ). Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm Bowel Dis 11, 473–480.[CrossRef]
    [Google Scholar]
  15. MacDonald, T. T. & Monteleone, G. ( 2005; ). Immunity, inflammation, and allergy in the gut. Science 307, 1920–1925.[CrossRef]
    [Google Scholar]
  16. Macfarlane, G. T. & Cummings, J. H. ( 1999; ). Probiotics and prebiotics: can regulating the activities of intestinal bacteria benefit health? BMJ 318, 999–1003.[CrossRef]
    [Google Scholar]
  17. Matsuki, T., Watanabe, K., Fujimoto, J., Miyamoto, Y., Takada, T., Matsumoto, K., Oyaizu, H. & Tanaka, R. ( 2002; ). Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl Environ Microbiol 68, 5445–5451.[CrossRef]
    [Google Scholar]
  18. Meyers, S., Mayer, L., Bottone, E., Desmond, E. & Janowitz, H. D. ( 1981; ). Occurrence of Clostridium difficile toxin during the course of inflammatory bowel disease. Gastroenterology 80, 697–690.
    [Google Scholar]
  19. Moore, W. E. C., Cato, E. P. & Holdeman, L. V. ( 1978; ). Some current concepts in intestinal bacteriology. Am J Clin Nutr 31, S33–S42.
    [Google Scholar]
  20. Nadkarni, M. A., Martin, F. E., Jacques, N. A. & Hunter, N. ( 2002; ). Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148, 257–266.
    [Google Scholar]
  21. Naser, S. A., Ghabrial, G., Romero, C. & Valentine, J. F. ( 2004; ). Culture of Mycobacterium avium subspecies paratuberculosis from the blood of patients with Crohn's disease. Lancet 364, 1039–1044.[CrossRef]
    [Google Scholar]
  22. Ott, S. J., Musfeldt, M., Wenderoth, D. F., Hampe, J., Brant, O., Folsch, U. R., Timmis, K. N. & Schreiber, S. ( 2004; ). Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53, 685–693.[CrossRef]
    [Google Scholar]
  23. Podolsky, D. K. ( 2002; ). Inflammatory bowel disease. N Engl J Med 347, 417–428.[CrossRef]
    [Google Scholar]
  24. Prindiville, T., Cantrell, M. & Wilson, K. H. ( 2004; ). Ribosomal DNA sequence analysis of mucosa-associated bacteria in Crohn's disease. Inflamm Bowel Dis 10, 824–833.[CrossRef]
    [Google Scholar]
  25. Pullan, R. D., Thomas, G. A. O., Rhodes, M., Newcombe, R. G., Williams, G. T., Allen, A. & Rhodes, J. ( 1994; ). Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis. Gut 35, 353–359.[CrossRef]
    [Google Scholar]
  26. Roberton, A. M. & Corfield, A. P. ( 1999; ). Mucin degradation and its significance in inflammatory conditions of the gastrointestinal tract. In Medical Importance of the Normal Microflora, pp. 222–261. Edited by G. W. Tannock. Dordrecht: Kluwer Academic Publishers.
  27. Rodtong, S. & Tannock, G. W. ( 1993; ). Differentiation of Lactobacillus strains by ribotyping. Appl Environ Microbiol 59, 3480–3484.
    [Google Scholar]
  28. Ruseler-Van Embden, J. G. H. & Both-Patoir, H. C. ( 1983; ). Anaerobic Gram-negative faecal flora in patients with Crohn's disease and healthy subjects. Antonie van Leeuwenhoek 49, 125–132.[CrossRef]
    [Google Scholar]
  29. Schloss, P. D. & Handelsman, J. ( 2005; ). Introducing dotur, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71, 1501–1506.[CrossRef]
    [Google Scholar]
  30. Schultsz, C., van den Berg, F., Ten Kate, F. W., Tytgat, G. N. & Dankert, J. ( 1999; ). The intestinal mucus layer from patients with inflammatory bowel disease harbors high numbers of bacteria compared with controls. Gastroenterology 117, 1089–1097.[CrossRef]
    [Google Scholar]
  31. Schultz, M. & Rath, H. C. ( 2002; ). The possible role of probiotic therapy in inflammatory bowel disease. In Probiotics and Prebiotics: Where Are We Going?, pp. 175–237. Edited by G. W. Tannock. Wymondham, UK: Caister Academic Press.
  32. Sechi, L. A., Mura, M., Tanda, F., Lissia, A., Solinas, A., Fadda, G. & Zanetti, S. ( 2001; ). Identification of Mycobacterium avium subsp. paratuberculosis in biopsy specimens from patients with Crohn's disease identified by in situ hybridization. J Clin Microbiol 39, 4514–4517.[CrossRef]
    [Google Scholar]
  33. Seksik, P., Rigottier-Gois, L., Gramet, G., Sutren, M., Pochart, P., Marteau, P., Jian, R. & Dore, J. ( 2003; ). Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut 52, 237–242.[CrossRef]
    [Google Scholar]
  34. Singleton, D. R., Furlong, M. A., Rathbun, S. L. & Whitman, W. B. ( 2001; ). Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67, 4374–4376.[CrossRef]
    [Google Scholar]
  35. Stebbings, S., Munro, K., Simon, M. A. & 8 other authors ( 2002; ). Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using molecular methods of analysis. Rheumatology 41, 1395–1401.[CrossRef]
    [Google Scholar]
  36. Swidsinski, A., Ladhoff, A., Pernthaler, A. & 8 other authors ( 2002; ). Mucosal flora in inflammatory bowel disease. Gastroenterology 122, 44–54.[CrossRef]
    [Google Scholar]
  37. Tannock, G. W., Munro, K., Harmsen, H. J. M., Welling, G. W., Smart, J. & Gopal, P. K. ( 2000; ). Analysis of the fecal microflora of human subjects consuming a probiotic containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol 66, 2578–2588.[CrossRef]
    [Google Scholar]
  38. Thompson, D. E. ( 1994; ). The role of mycobacteria in Crohn's disease. J Med Microbiol 41, 74–94.[CrossRef]
    [Google Scholar]
  39. Thorel, M.-F., Krichevsky, M. & Levy-Frebault, V. V. ( 1990; ). Numerical taxonomy of mycobactin-dependent mycobacteria, emended description of Mycobacterium avium, and description of Mycobacterium avium subsp. avium subsp. nov., Mycobacterium avium subsp. paratuberculosis subsp. nov., and Mycobacterium avium subsp. silvaticum subsp. nov. Int J Syst Bacteriol 40, 254–260.[CrossRef]
    [Google Scholar]
  40. Tiveljung, A., Soderholm, J. D., Olaison, G., Jonasson, J. & Monstein, H.-J. ( 1999; ). Presence of eubacteria in biopsies from Crohn's disease inflammatory lesions as determined by 16S rRNA gene-based PCR. J Med Microbiol 48, 263–268.[CrossRef]
    [Google Scholar]
  41. Walter, J., Hertel, C., Tannock, G. W., Lis, C. M., Munro, K. & Hammes, W. P. ( 2001; ). Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67, 2578–2585.[CrossRef]
    [Google Scholar]
  42. Walter, J., Mangold, M. & Tannock, G. W. ( 2005; ). Construction, analysis, and β-glucanase screening of a bacterial artificial chromosome library from the large bowel of mice. Appl Environ Microbiol 71, 2347–2354.[CrossRef]
    [Google Scholar]
  43. Ward, J. M., Anver, M. R., Haines, D. C., Melhorn, J. M., Gorelick, P., Yan, L. & Fox, J. G. ( 1996; ). Inflammatory large bowel disease in immunodeficient mice naturally infected with Helicobacter hepaticus. Lab Anim Sci 46, 15–20.
    [Google Scholar]
  44. Zimmer, R. & Gibbins, A. M. ( 1997; ). Construction and characterization of a large-fragment chicken bacterial artificial chromosome library. Genomics 42, 217–226.[CrossRef]
    [Google Scholar]
  45. Zoetendal, E., Akkermans, A. D. & DeVos, W. M. ( 1998; ). Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64, 3854–3859.
    [Google Scholar]
  46. Zoetendal, E. G., von Wright, A., Vilpponen-Salmela, T., Ben-Amor, K., Akkermans, A. D. L. & De Vos, W. M. ( 2002; ). Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 68, 3401–3407.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46498-0
Loading
/content/journal/jmm/10.1099/jmm.0.46498-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error