1887

Abstract

is an opportunistic intracellular pathogen that has become an important cause of human foodborne infections worldwide. Given its close relationship to other species and its tendency to produce non-specific clinical symptoms, the availability of rapid, sensitive and specific diagnostic tests for the differentiation of from other species is helpful for selecting appropriate treatment regimens. In addition, with comprising a diversity of strains of varying pathogenicity, the ability to precisely track the strains involved in listeriosis outbreaks and speedily determine their pathogenic potential is critical for the control and prevention of further occurrences of this deadly disease. Extensive research in recent decades has revealed significant insights regarding the molecular mechanisms of infection. This in turn has facilitated the development of laboratory procedures for enhanced detection and identification of , and has also contributed to the implementation of improved control and prevention strategies against listeriosis. The purpose of this review is to summarize recent progress in the species-specific identification, subtyping and virulence determination of strains, and to discuss future research needs pertaining to these important areas of listeriosis.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46495-0
2006-06-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/6/645.html?itemId=/content/journal/jmm/10.1099/jmm.0.46495-0&mimeType=html&fmt=ahah

References

  1. Altekruse, S. F., Cohen, M. L. & Swerdlow, D. L. ( 1997; ). Emerging foodborne diseases. Emerg Infect Dis 3, 285–293.[CrossRef]
    [Google Scholar]
  2. Audurier, A., Taylor, A. G., Carbonnelle, B. & McLauchlin, J. ( 1984; ). A phage typing system for Listeria monocytogenes and its use in epidemiological studies. Clin Invest Med 7, 229–232.
    [Google Scholar]
  3. Aznar, R. & Alarcon, B. ( 2002; ). On the specificity of PCR detection of Listeria monocytogenes in food: a comparison of published primers. Syst Appl Microbiol 25, 109–119.[CrossRef]
    [Google Scholar]
  4. Bibb, W. F., Schwartz, B., Gellin, B. G., Plikaytis, B. D. & Weaver, R. E. ( 1989; ). Analysis of Listeria monocytogenes by multilocus enzyme electrophoresis and application of the method to epidemiologic investigations. Int J Food Microbiol 8, 233–239.[CrossRef]
    [Google Scholar]
  5. Bille, J., Catimel, B., Bannerman, E., Jacquet, C., Yersin, M. N., Caniaux, I., Monget, D. & Rocourt, J. ( 1992; ). API Listeria, a new and promising one-day system to identify Listeria isolates. Appl Environ Microbiol 58, 1857–1860.
    [Google Scholar]
  6. Blais, B. W., Turner, G., Sooknanan, R. & Malek, L. T. ( 1997; ). A nucleic acid sequence-based amplification system for detection of Listeria monocytogenes hlyA sequences. Appl Environ Microbiol 63, 310–313.
    [Google Scholar]
  7. Borucki, M. K. & Call, D. R. ( 2003; ). Listeria monocytogenes serotype identification by PCR. J Clin Microbiol 41, 5537–5540.[CrossRef]
    [Google Scholar]
  8. Brosch, R., Chen, J. & Luchansky, J. B. ( 1994; ). Pulsed-field fingerprinting of listeriae: identification of genomic divisions for Listeria monocytogenes and their correlation with serovar. Appl Environ Microbiol 60, 2584–2592.
    [Google Scholar]
  9. Brosch, R., Brett, M., Catimel, B., Luchansky, J. B., Ojeniyi, B. & Rocourt, J. ( 1996; ). Genomic fingerprinting of 80 strains from the WHO multicenter international typing study of Listeria monocytogenes via pulsed-field gel electrophoresis (PFGE). Int J Food Microbiol 32, 343–355.[CrossRef]
    [Google Scholar]
  10. Bruce, J. L., Hubner, R. J., Cole, E. M., McDowell, C. I. & Webster, J. A. ( 1995; ). Sets of EcoRI fragments containing ribosomal RNA sequences are conserved among different strains of Listeria monocytogenes. Proc Natl Acad Sci U S A 92, 5229–5233.[CrossRef]
    [Google Scholar]
  11. Bubert, A., Kohler, S. & Goebel, W. ( 1992; ). The homologous and heterologous regions within the iap gene allow genus- and species-specific identification of Listeria spp. by polymerase chain reaction. Appl Environ Microbiol 58, 2625–2632.
    [Google Scholar]
  12. Bubert, A., Hein, I., Rauch, M., Lehner, A., Yoon, B., Goebel, W. & Wagner, M. ( 1999; ). Detection and differentiation of Listeria spp. by a single reaction based multiplex PCR. Appl Environ Microbiol 65, 4688–4692.
    [Google Scholar]
  13. Doumith, M., Buchrieser, C., Glaser, P., Jacquet, C. & Martin, P. ( 2004a; ). Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J Clin Microbiol 42, 3819–3822.[CrossRef]
    [Google Scholar]
  14. Doumith, M., Cazalet, C., Simoes, N. & 7 other authors ( 2004b; ). New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect Immun 72, 1072–1083.[CrossRef]
    [Google Scholar]
  15. Ermolaeva, S., Karpova, T., Novella, S., Wagner, M., Scortti, M., Tartakovskii, I. & Vazquez-Boland, J. A. ( 2003; ). A simple method for the differentiation of Listeria monocytogenes on induction of lecithinase activity by charcoal. Int J Food Microbiol 82, 87–94.[CrossRef]
    [Google Scholar]
  16. Farber, J. & Addison, C. ( 1994; ). RAPD typing for distinguishing species and strains in the genus Listeria. J Appl Bacteriol 77, 242–250.[CrossRef]
    [Google Scholar]
  17. Franciosa, G., Tartaro, S., Wedell-Neergaard, C. & Aureli, P. ( 2001; ). Characterization of Listeria monocytogenes strains involved in invasive and noninvasive listeriosis outbreaks by PCR-based fingerprinting techniques. Appl Environ Microbiol 67, 1793–1799.[CrossRef]
    [Google Scholar]
  18. Furrer, B., Candrian, U., Hoefelein, C. & Luethy, J. ( 1991; ). Detection and identification of Listeria monocytogenes in cooked sausage products and in milk by in vitro amplification of haemolysin gene fragments. J Appl Bacteriol 70, 372–379.[CrossRef]
    [Google Scholar]
  19. Gaillard, J.-L., Berche, P., Frehel, C., Gouin, E. & Cossart, P. ( 1991; ). Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from Gram-positive cocci. Cell 65, 1127–1141.[CrossRef]
    [Google Scholar]
  20. Gilot, P. & Content, J. ( 2002; ). Specific identification of Listeria welshimeri and Listeria monocytogenes by PCR assays targeting a gene encoding a fibronectin-binding protein. J Clin Microbiol 40, 698–703.[CrossRef]
    [Google Scholar]
  21. Glaser, P., Frangeul, L., Buchrieser, C. & 52 other authors ( 2001; ). Comparative genomics of Listeria species. Science 294, 849–852.
    [Google Scholar]
  22. Gouin, E., Mengaud, J. & Cossart, P. ( 1994; ). The virulence gene cluster of Listeria monocytogenes is also present in Listeria ivanovii, an animal pathogen, and Listeria seeligeri, a nonpathogenic species. Infect Immun 62, 3550–3553.
    [Google Scholar]
  23. Gracieux, P., Roche, S. M., Pardon, P. & Velge, P. ( 2003; ). Hypovirulent Listeria monocytogenes strains are less frequently recovered than virulent strains on PALCAM and Rapid' L. mono media. Int J Food Microbiol 83, 133–145.[CrossRef]
    [Google Scholar]
  24. Graham, T., Golsteyn-Thomas, E. J., Gannon, V. P. & Thomas, J. E. ( 1996; ). Genus- and species-specific detection of Listeria monocytogenes using polymerase chain reaction assays targeting the 16S/23S intergenic spacer region of the rRNA operon. Can J Microbiol 42, 1155–1162.[CrossRef]
    [Google Scholar]
  25. Graham, T. A., Golsteyn-Thomas, E. J., Thomas, J. E. & Gannon, C. P. J. ( 1997; ). Inter- and intraspecies comparison of the 16S–23S rRNA operon intergenic spacer regions of six Listeria spp. Int J Syst Bacteriol 47, 863–869.[CrossRef]
    [Google Scholar]
  26. Graves, L., Swaminathan, B., Reeves, M., Hunter, S. B., Weaver, R. E., Plikaytis, B. D. & Schuchat, A. ( 1994; ). Comparison of ribotyping and multilocus enzyme electrophoresis for subtyping of Listeria monocytogenes isolates. J Clin Microbiol 32, 2936–2943.
    [Google Scholar]
  27. Gray, D. I. & Kroll, R. G. ( 1995; ). Polymerase chain reaction amplification of the flaA gene for the rapid identification of Listeria spp. Lett Appl Microbiol 20, 65–68.[CrossRef]
    [Google Scholar]
  28. Gray, M. J., Zadoks, R. N., Fortes, E. D. & 7 other authors ( 2004; ). Listeria monocytogenes isolates from foods and humans form distinct but overlapping populations. Appl Environ Microbiol 70, 5833–5841.[CrossRef]
    [Google Scholar]
  29. Guerra, M. M., Bernardo, F. & McLauchlin, J. ( 2002; ). Amplified fragment length polymorphism (AFLP) analysis of Listeria monocytogenes. Syst Appl Microbiol 25, 456–461.[CrossRef]
    [Google Scholar]
  30. Harvey, J. & Gilmour, A. ( 1996; ). Characterization of Listeria monocytogenes isolates by esterase electrophoresis. Appl Environ Microbiol 62, 1461–1466.
    [Google Scholar]
  31. Jacquet, C., Gouin, E., Jeannel, D., Cossart, P. & Rocourt, J. ( 2002; ). Expression of ActA, Ami, InlB, and listeriolysin O in Listeria monocytogenes of human and food origin. Appl Environ Microbiol 68, 616–622.[CrossRef]
    [Google Scholar]
  32. Jaradat, Z. W., Schutze, G. E. & Bhunia, A. K. ( 2002; ). Genetic homogeneity among Listeria monocytogenes strains from infected patients and meat products from two geographic locations determined by phenotyping, ribotyping and PCR analysis of virulence genes. Int J Food Microbiol 76, 1–10.[CrossRef]
    [Google Scholar]
  33. Jeffers, G. T., Bruce, J. L., McDonough, P., Scarlett, J., Boor, K. J. & Wiedmann, M. ( 2001; ). Comparative genetic characterization of Listeria monocytogenes isolates from human and animal listeriosis cases. Microbiology 147, 1095–1104.
    [Google Scholar]
  34. Jersek, B., Gilot, P., Gubina, M., Klun, N., Mehle, J., Tcherneva, E., Rijpens, N. & Herman, L. ( 1999; ). Typing of Listeria monocytogenes strains by repetitive element sequence-based PCR. J Clin Microbiol 37, 103–109.
    [Google Scholar]
  35. Jinneman, K. C. & Hill, W. E. ( 2001; ). Listeria monocytogenes lineage group classification by MAMA-PCR of the listeriolysin gene. Curr Microbiol 43, 129–133.[CrossRef]
    [Google Scholar]
  36. Johnson, W., Tyler, S., Ewan, E., Ashton, F., Wang, G. & Rozee, K. ( 1992; ). Detection of genes coding for listeriolysin and Listeria monocytogenes antigen A (lmA) in Listeria spp. by the polymerase chain reaction. Microbial Pathog 12, 79–86.[CrossRef]
    [Google Scholar]
  37. Jung, Y. S., Frank, J. F., Brackett, R. E. & Chen, J. ( 2003; ). Polymerase chain reaction detection of Listeria monocytogenes on frankfurters using oligonucleotide primers targeting the genes encoding internalin AB. J Food Prot 66, 237–241.
    [Google Scholar]
  38. Kathariou, S. ( 2002; ). Listeria monocytogenes virulence and pathogenicity, a food safety perspective. J Food Prot 65, 1811–1829.
    [Google Scholar]
  39. Kerouanton, A., Brisabois, A., Denoyer, E., Dilasser, F., Grout, J., Salvat, G. & Picard, B. ( 1998; ). Comparison of five typing methods for the epidemiological study of Listeria monocytogenes. Int J Food Microbiol 43, 61–71.[CrossRef]
    [Google Scholar]
  40. Keto-Timonen, R. O., Autio, T. J. & Korkeala, H. J. ( 2003; ). An improved amplified fragment length polymorphism (AFLP) protocol for discrimination of Listeria isolates. Syst Appl Microbiol 26, 236–244.[CrossRef]
    [Google Scholar]
  41. Klinger, J. D., Johnson, A., Croan, D., Flynn, P., Whippie, K., Kimball, M., Lawrie, J. & Curiale, M. ( 1988; ). Comparative studies of nucleic acid hybridization assay for Listeria in foods. J Assoc Off Anal Chem 71, 669–673.
    [Google Scholar]
  42. Kohler, S., Leimeister-Wachter, M., Chakraborty, T., Lottspeich, F. & Goebel, W. ( 1990; ). The gene coding for protein p60 of Listeria monocytogenes and its use as a specific probe for Listeria monocytogenes. Infect Immun 58, 1943–1950.
    [Google Scholar]
  43. Lei, X. H., Fiedler, F., Lan, Z. & Kathariou, S. ( 2001; ). A novel serotype-specific gene cassette (gltA–gltB) is required for expression of teichoic acid-associated surface antigens in Listeria monocytogenes of serotype 4b. J Bacteriol 183, 1133–1139.[CrossRef]
    [Google Scholar]
  44. Liu, D. ( 2004; ). Listeria monocytogenes: comparative interpretation of mouse virulence assay. FEMS Microbiol Lett 233, 159–164.[CrossRef]
    [Google Scholar]
  45. Liu, D., Ainsworth, A. J., Austin, F. W. & Lawrence, M. L. ( 2003a; ). Characterization of virulent and avirulent Listeria monocytogenes strains by PCR amplification of putative transcriptional regulator and internalin genes. J Med Microbiol 52, 1066–1070.
    [Google Scholar]
  46. Liu, D., Ainsworth, A. J., Austin, F. W. & Lawrence, M. L. ( 2003b; ). Identification of Listeria innocua by PCR targeting a putative transcriptional regulator gene. FEMS Microbiol Lett 203, 205–210.
    [Google Scholar]
  47. Liu, D., Ainsworth, A. J., Austin, F. W. & Lawrence, M. L. ( 2004a; ). Use of PCR primers derived from a putative transcriptional regulator gene for species-specific identification of Listeria monocytogenes. Int J Food Microbiol 91, 297–304.[CrossRef]
    [Google Scholar]
  48. Liu, D., Ainsworth, A. J., Austin, F. W. & Lawrence, M. L. ( 2004b; ). Identification of a gene encoding a putative phosphotransferase system enzyme IIBC in Listeria welshimeri and its application for diagnostic PCR. Lett Appl Microbiol 38, 151–157.[CrossRef]
    [Google Scholar]
  49. Liu, D., Ainsworth, A. J., Austin, F. W. & Lawrence, M. L. ( 2004c; ). PCR detection of a putative N-acetylmuramidase gene from Listeria ivanovii facilitates its rapid identification. Vet Microbiol 101, 83–89.[CrossRef]
    [Google Scholar]
  50. Liu, D., Lawrence, M. L., Ainsworth, A. J. & Austin, F. W. ( 2004d; ). Species-specific PCR determination of Listeria seeligeri. Res Microbiol 155, 741–746.[CrossRef]
    [Google Scholar]
  51. Liu, D., Lawrence, M., Austin, F. W. & Ainsworth, A. J. ( 2005a; ). Comparative assessment of acid, alkali and salt tolerance in Listeria monocytogenes virulent and avirulent strains. FEMS Microbiol Lett 243, 373–378.[CrossRef]
    [Google Scholar]
  52. Liu, D., Lawrence, M., Austin, F. W. & Ainsworth, A. J. ( 2005b; ). Isolation and PCR amplification of a species-specific, oxidoreductase-coding gene region in Listeria grayi. Can J Microbiol 51, 95–98.[CrossRef]
    [Google Scholar]
  53. Liu, D., Lawrence, M., Gorski, L., Mandrell, R. E., Austin, F. W. & Ainsworth, A. J. ( 2006a; ). Listeria monocytogenes serotype 4b strains belonging to lineages I and III possess distinct molecular features. J Clin Microbiol 44, 204–207.
    [Google Scholar]
  54. Liu, D., Lawrence, M. L, Gorski, L, Mandrell, R. E., Ainsworth, A. J. & Austin, F. W. ( 2006b; ). Further investigation on the taxonomic status of Listeria monocytogenes lineage III strains. In American Society for Microbiology 106th General Meeting Abstracts, May 2006, Orlando, FL. Washington DC: American Society for Microbiology.
  55. Loessner, M. J. ( 1991; ). Improved procedure for bacteriophage typing of Listeria strains and evaluation of new phages. Appl Environ Microbiol 57, 882–884.
    [Google Scholar]
  56. Loessner, M. J. & Busse, M. ( 1990; ). Bacteriophage typing of Listeria species. Appl Environ Microbiol 56, 1912–1918.
    [Google Scholar]
  57. Longhi, C., Maffeo, A., Penta, M., Petrone, G., Seganti, L. & Conte, M. P. ( 2003; ). Detection of Listeria monocytogenes in Italian-style soft cheeses. J Appl Microbiol 94, 879–885.[CrossRef]
    [Google Scholar]
  58. Low, J. C. & Donachie, W. ( 1997; ). A review of Listeria monocytogenes and listeriosis. Vet J 153, 9–29.[CrossRef]
    [Google Scholar]
  59. Manzano, M., Cocolin, L., Cantoni, C. & Comi, G. ( 2000; ). Temperature gradient gel electrophoresis of the amplified product of a small 16S rRNA gene fragment for the identification of Listeria species isolated from food. J Food Prot 63, 659–661.
    [Google Scholar]
  60. Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., Shapiro, C., Griffin, P. M. & Tauxe, R. V. ( 1999; ). Food-related illness and death in the United States. Emerg Infect Dis 5, 607–625.[CrossRef]
    [Google Scholar]
  61. Meinersmann, R. J., Phillips, R. W., Wiedmann, M. & Berrang, M. E. ( 2004; ). Multilocus sequence typing of Listeria monocytogenes by use of hypervariable genes reveals clonal and recombination histories of three lineages. Appl Environ Microbiol 70, 2193–2203.[CrossRef]
    [Google Scholar]
  62. Nadon, C. A., Woodward, D. L., Young, C., Rodgers, F. G. & Wiedmann, M. ( 2001; ). Correlations between molecular subtyping and serotyping of Listeria monocytogenes. J Clin Microbiol 39, 2704–2707.[CrossRef]
    [Google Scholar]
  63. Nelson, K. E., Fouts, D. E., Mongodin, E. F. & 30 other authors ( 2004; ). Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res 32, 2386–2395.[CrossRef]
    [Google Scholar]
  64. Nishibori, T., Cooray, K., Xiong, H., Kawamura, I., Fujita, M. & Mitsuyama, M. ( 1995; ). Correlation between the presence of virulence-associated genes as determined by PCR and actual virulence to mice in various strains of Listeria spp. Microbiol Immunol 39, 343–349.[CrossRef]
    [Google Scholar]
  65. O'Donoghue, K., Bowker, K., McLauchlin, J., Reeves, D. S., Bennett, P. M. & MacGowan, A. P. ( 1995; ). Typing of Listeria monocytogenes by random amplified polymorphic DNA (RAPD) analysis. Int J Food Microbiol 27, 245–252.[CrossRef]
    [Google Scholar]
  66. Olier, M., Pierre, F., Lemaitre, J. P., Divies, C., Rousset, A. & Guzzo, J. ( 2002; ). Assessment of the pathogenic potential of two Listeria monocytogenes human faecal carriage isolates. Microbiology 148, 1855–1862.
    [Google Scholar]
  67. Paillard, D., Dubois, V., Duran, R., Nathier, F., Guittet, C., Caumetter, P. & Quentin, C. ( 2003; ). Rapid identification of Listeria species by using restriction fragment length polymorphism of PCR-amplified 23S rRNA gene fragments. Appl Environ Microbiol 69, 6386–6392.[CrossRef]
    [Google Scholar]
  68. Palumbo, J. D., Borucki, M. K., Mandrell, R. E. & Gorski, L. ( 2003; ). Serotyping of Listeria monocytogenes by enzyme-linked immunosorbent assay and identification of mixed-serotype cultures by colony immunoblotting. J Clin Microbiol 41, 564–571.[CrossRef]
    [Google Scholar]
  69. Pangallo, D., Kaclikova, E., Kuchta, T. & Drahovska, H. ( 2001; ). Detection of Listeria monocytogenes by polymerase chain reaction oriented to inlB gene. New Microbiol 24, 333–339.
    [Google Scholar]
  70. Piffaretti, J.-C., Kressebuch, H., Aeschenbacher, M., Bille, J., Bannerman, E., Musser, J. M., Seelander, R. K. & Rocourt, J. ( 1989; ). Genetic characterization of clones of the bacterium Listeria monocytogenes causing epidemic disease. Proc Natl Acad Sci U S A 86, 3818–3822.[CrossRef]
    [Google Scholar]
  71. Pine, L., Kathariou, S., Quinn, F., George, V., Wenger, J. D. & Weaver, R. E. ( 1991; ). Cytopathogenic effects in enterocytelike Caco-2 cells differentiate virulent from avirulent Listeria strains. J Clin Microbiol 29, 990–996.
    [Google Scholar]
  72. Portnoy, D. A., Chakraborty, T., Goebel, W. & Cossart, P. ( 1992; ). Molecular determinants of Listeria monocytogenes pathogenesis. Infect Immun 60, 1263–1267.
    [Google Scholar]
  73. Poyart, C., Trieu-Cuot, P. & Berche, P. ( 1996; ). The inlA gene required for cell invasion is conserved and specific to Listeria monocytogenes. Microbiology 142, 173–180.[CrossRef]
    [Google Scholar]
  74. Rasmussen, O. F., Skouboe, P., Dons, L., Rossen, L. & Olsen, J. E. ( 1995; ). Listeria monocytogenes exists in at least three evolutionary lines: Evidence from flagellin, invasive associated protein and listeriolysin O genes. Microbiology 141, 2053–2061.[CrossRef]
    [Google Scholar]
  75. Reed, L. J. & Muench, H. ( 1938; ). A simple method of estimating fifty per cent endpoints. Am J Hyg 27, 493–497.
    [Google Scholar]
  76. Ripabelli, G., McLauchin, J. & Threlfall, E. J. ( 2000; ). Amplified fragment length polymorphism (AFLP) analysis of Listeria monocytogenes. Syst Appl Microbiol 23, 132–136.[CrossRef]
    [Google Scholar]
  77. Roberts, A., Chan, Y. & Wiedmann, M. ( 2005; ). Definition of genetically distinct attenuation mechanisms in naturally virulence-attenuated Listeria monocytogenes by comparative cell culture and molecular characterization. Appl Environ Microbiol 71, 3900–3910.[CrossRef]
    [Google Scholar]
  78. Robinson, R. K., Batt, C. A. & Patel, P. D. (editors) ( 2000; ). Encyclopedia of Food Microbiology. San Diego, CA: Academic Press.
  79. Roche, S. M., Velge, P., Bottreau, E., Durier, C., Marquet-van der Mee, N. & Pardon, P. ( 2001; ). Assessment of the virulence of Listeria monocytogenes: agreement between a plaque-forming assay with HT-29 cells and infection of immunocompetent mice. Int J Food Microbiol 68, 33–44.[CrossRef]
    [Google Scholar]
  80. Roche, S. M., Gracieux, P., Albert, I., Gouali, M., Jacquet, C., Martin, P. M. & Velge, P. ( 2003; ). Experimental validation of low virulence in field strains of Listeria monocytogenes. Infect Immun 71, 3429–3436.[CrossRef]
    [Google Scholar]
  81. Roche, S. M., Gracieux, P., Milohanic, P. & 7 other authors ( 2005; ). Investigation of specific substitutions in virulence genes characterizing phenotypic groups of low-virulence field strains of Listeria monocytogenes. Appl Environ Microbiol 71, 6039–6048.[CrossRef]
    [Google Scholar]
  82. Rocourt, J. & Catimel, B. ( 1985; ). Biochemical characterization of species in the genus Listeria. Zentralbl Bakteriol Mikrobiol Hyg [A] 260, 221–231.
    [Google Scholar]
  83. Rodríguez-Lázaro, D., Hernández, M., Scortti, M., Esteve, T., Vázquez-Boland, J. A. & Pla, M. ( 2004; ). Quantitative detection of Listeria monocytogenes and Listeria innocua by real-time PCR: assessment of hly, iap, and lin02483 targets and AmpliFluor technology. Appl Environ Microbiol 70, 1366–1377.[CrossRef]
    [Google Scholar]
  84. Sabet, C., Lecuit, M., Cabnes, D., Cossart, P. & Bierne, H. ( 2005; ). LPXTG protein InlJ, a newly identified internalin involved in Listeria monocytogenes virulence. Infect Immun 73, 6912–6922.[CrossRef]
    [Google Scholar]
  85. Sallen, B., Rajoharison, A., Desvarenne, S., Quinn, F. & Mabilat, C. ( 1996; ). Comparative analysis of 16S and 23S rRNA sequences of Listeria species. Int J Syst Bacteriol 46, 669–674.[CrossRef]
    [Google Scholar]
  86. Schonberg, A., Bannerman, E., Courtieu, A. L., Kiss, R., McLauchlin, J., Shah, S. & Wilhelms, D. ( 1996; ). Serotyping of 80 strains from the WHO multicentre international typing study of Listeria monocytogenes. Int J Food Microbiol 32, 279–287.[CrossRef]
    [Google Scholar]
  87. Seeliger, H. P. R. & Höhne, K. ( 1979; ). Serotyping of Listeria monocytogenes and related species. Methods Microbiol 13, 31–49.
    [Google Scholar]
  88. Seeliger, H. P. R. & Jones, D. ( 1986; ). Listeria. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1235–1245. Edited by P. H. A. Sneath, N. S. Nair, N. E. Sharpe & J. G. Holt. Baltimore: Williams and Wilkins.
  89. Sleator, R. D., Gahan, C. G. M. & Hill, C. ( 2003; ). A postgenomic appraisal of osmotolerance in Listeria monocytogenes. Appl Environ Microbiol 69, 1–9.[CrossRef]
    [Google Scholar]
  90. Vazquez-Boland, J. A., Kuhn, M., Berche, P., Chakraborty, T., Dominguez-Bernal, G., Goebel, W., Gonzalez-Zorn, B., Wehlan, J. & Kreft, J. ( 2001; ). Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14, 584–640.[CrossRef]
    [Google Scholar]
  91. Volokhov, D., Rasooly, A., Chumakov, K. & Chizhikov, V. ( 2002; ). Identification of Listeria species by microarray-based assay. J Clin Microbiol 40, 4720–4728.[CrossRef]
    [Google Scholar]
  92. Wang, R. F., Cao, W. W. & Johnson, M. G. ( 1992; ). 16S rRNA-based probes and polymerase chain reaction method to detect Listeria monocytogenes cells added to foods. Appl Environ Microbiol 58, 2827–2831.
    [Google Scholar]
  93. Wang, R. F., Cao, W. W., Wang, H. & Johnson, M. G. ( 1993; ). A 16S rRNA-based DNA probe and PCR method specific for Listeria ivanovii. FEMS Microbiol Lett 106, 85–92.[CrossRef]
    [Google Scholar]
  94. Ward, T. J., Gorski, L., Borucki, M. K., Mandrell, R. E., Hutchins, J. & Pupedis, K. ( 2004; ). Intraspecific phylogeny and lineage group identification based on the prfA virulence gene cluster of Listeria monocytogenes. J Bacteriol 186, 4994–5002.[CrossRef]
    [Google Scholar]
  95. Welkos, S. & O'Brien, A. ( 1994; ). Determination of median lethal and infectious doses in animal model systems. Methods Enzymol 235, 29–39.
    [Google Scholar]
  96. Wernar, K., Heuvelman, K., Notermans, S., Domann, E., Leimeister-Wachter, M. & Chakraborty, T. ( 1992; ). Suitability of the prfA gene, which encodes a regulator of virulence genes in Listeria monocytogenes, in the identification of pathogenic Listeria spp. Appl Environ Microbiol 58, 765–768.
    [Google Scholar]
  97. Wiedmann, M. ( 2002; ). Molecular subtyping methods for Listeria monocytogenes. J Assoc Off Anal Chem 85, 524–531.
    [Google Scholar]
  98. Wiedmann, M., Bruce, J. L., Knorr, R., Bodis, M., Cole, E. M., McDowell, C. I., McDonough, P. L. & Batt, C. A. ( 1996; ). Ribotype diversity of Listeria monocytogenes strains associated with outbreaks of listeriosis in ruminants. J Clin Microbiol 34, 1086–1090.
    [Google Scholar]
  99. Wiedmann, M., Bruce, J. L., Keating, C., Johnson, A. E., McDonough, P. L. & Batt, C. A. ( 1997; ). Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect Immun 65, 2707–2716.
    [Google Scholar]
  100. Winters, D. K., Maloney, T. P. & Johnson, M. G. ( 1999; ). Rapid detection of Listeria monocytogenes by a PCR assay specific for an aminopeptidase. Mol Cell Probes 13, 127–131.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46495-0
Loading
/content/journal/jmm/10.1099/jmm.0.46495-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error