1887

Abstract

Infection with human papillomavirus (HPV) is the main cause of cervical cancer, the principal cancer in women in most developing countries. Molecular epidemiologic evidence clearly indicates that certain types of HPV are the principal cause of invasive cervical cancer and cervical intraepithelial neoplasia. Comprehensive, high-throughput typing assays for HPV, however, are not currently available. By combining L1 consensus PCR and multiplex hybridization using a Luminex xMAP system-based suspension array, the authors developed a rapid high-throughput assay, the HPV DNA suspension array (HPV-SA), capable of simultaneously typing 26 HPVs, including 18 high-risk HPV genotypes and eight low-risk HPV genotypes. The performance of the HPV-SA applied to 26 synthetic oligonucleotide targets was evaluated. The HPV-SA system perfectly discriminated 18 high-risk HPV targets from eight low-risk HPV targets. To assess the clinical applicability of the assay, the HPV-SA was performed with 133 MY09/MY11 primer set-mediated PCR (MY-PCR)-positive clinical specimens; of the 133 samples, 121 were positive by HPV-SA. Both single and multiple types were easily identified. The authors believe that improvement of the assay may be useful for epidemiological studies, cancer-screening programmes, the monitoring of therapeutic interventions, and the evaluation of the efficacy of HPV vaccine trials.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46493-0
2006-06-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/6/715.html?itemId=/content/journal/jmm/10.1099/jmm.0.46493-0&mimeType=html&fmt=ahah

References

  1. Beby-Defaux, A., Bourgoin, A., Ragot, S., Battandier, D., Lemasson, J. M., Renaud, O., Bouguermouh, S., Vienne Md Mde, L. & Agius, G. ( 2004; ). Human papillomavirus infection of the cervix uteri in women attending a Health Examination Center of the French social security. J Med Virol 73, 262–268.[CrossRef]
    [Google Scholar]
  2. Cho, N. H., An, H. J., Jeong, J. K., Kang, S., Kim, J. W., Kim, Y. T. & Park, T. K. ( 2003; ). Genotyping of 22 human papillomavirus types by DNA chip in Korean women: comparison with cytologic diagnosis. Am J Obstet Gynecol 188, 56–62.[CrossRef]
    [Google Scholar]
  3. Dunbar, S. A., Vander Zee, C. A., Oliver, K. G., Karem, K. L. & Jacobson, J. W. ( 2003; ). Quantitative, multiplexed detection of bacterial pathogens: DNA and protein applications of the Luminex LabMAP system. J Microbiol Methods 53, 245–252.[CrossRef]
    [Google Scholar]
  4. Fulton, R. J., McDade, R. L., Smith, P. L., Kienker, L. J. & Kettman, J. R., Jr ( 1997; ). Advanced multiplexed analysis with the FlowMetrix system. Clin Chem 43, 1749–1756.
    [Google Scholar]
  5. Gravitt, P. E., Peyton, C. L., Alessi, T. Q., Wheeler, C. M., Coutlee, F., Hildesheim, A., Schiffman, M. H., Scott, D. R. & Apple, R. J. ( 2000; ). Improved amplification of genital human papillomaviruses. J Clin Microbiol 38, 357–361.
    [Google Scholar]
  6. Hart, K. W., Williams, O. M., Thelwell, N., Fiander, A. N., Brown, T., Borysiewicz, L. K. & Gelder, C. M. ( 2001; ). Novel method for detection, typing, and quantification of human papillomaviruses in clinical samples. J Clin Microbiol 39, 3204–3212.[CrossRef]
    [Google Scholar]
  7. Iannone, M. A., Taylor, J. D., Chen, J., Li, M. S., Rivers, P., Slentz-Kesler, K. A. & Weiner, M. P. ( 2000; ). Multiplexed single nucleotide polymorphism genotyping by oligonucleotide ligation and flow cytometry. Cytometry 39, 131–140.[CrossRef]
    [Google Scholar]
  8. Jacobs, M. V., de Roda Husman, A. M., van den Brule, A. J., Snijders, P. J., Meijer, C. J. & Walboomers, J. M. ( 1995; ). Group-specific differentiation between high- and low-risk human papillomavirus genotypes by general primer-mediated PCR and two cocktails of oligonucleotide probes. J Clin Microbiol 33, 901–905.
    [Google Scholar]
  9. Kim, C. J., Jeong, J. K., Park, M., Park, T. S., Park, T. C., Namkoong, S. E. & Park, J. S. ( 2003; ). HPV oligonucleotide microarray-based detection of HPV genotypes in cervical neoplastic lesions. Gynecol Oncol 89, 210–217.[CrossRef]
    [Google Scholar]
  10. Klaassen, C. H., Prinsen, C. F., de Valk, H. A., Horrevorts, A. M., Jeunink, M. A. & Thunnissen, F. B. ( 2004; ). DNA microarray format for detection and subtyping of human papillomavirus. J Clin Microbiol 42, 2152–2160.[CrossRef]
    [Google Scholar]
  11. Munoz, N., Bosch, F. X., de Sanjose, S., Herrero, R., Castellsague, X., Shah, K. V., Snijders, P. J. & Meijer, C. J. ( 2003; ). Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348, 518–527.[CrossRef]
    [Google Scholar]
  12. Oh, T. J., Kim, C. J., Woo, S. K., Kim, T. S., Jeong, D. J., Kim, M. S., Lee, S., Cho, H. S. & An, S. ( 2004; ). Development and clinical evaluation of a highly sensitive DNA microarray for detection and genotyping of human papillomaviruses. J Clin Microbiol 42, 3272–3280.[CrossRef]
    [Google Scholar]
  13. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  14. van den Brule, A. J., Pol, R., Fransen-Daalmeijer, N., Schouls, L. M., Meijer, C. J. & Snijders, P. J. ( 2002; ). GP5+/6+ PCR followed by reverse line blot analysis enables rapid and high-throughput identification of human papillomavirus genotypes. J Clin Microbiol 40, 779–787.[CrossRef]
    [Google Scholar]
  15. van Ham, M. A., Bakkers, J. M., Harbers, G. K., Quint, W. G., Massuger, L. F. & Melchers, W. J. ( 2005; ). Comparison of two commercial assays for detection of human papillomavirus (HPV) in cervical scrape specimens: validation of the Roche AMPLICOR HPV test as a means to screen for HPV genotypes associated with a higher risk of cervical disorders. J Clin Microbiol 43, 2662–2667.[CrossRef]
    [Google Scholar]
  16. Vernon, S. D., Unger, E. R. & Williams, D. ( 2000; ). Comparison of human papillomavirus detection and typing by cycle sequencing, line blotting, and hybrid capture. J Clin Microbiol 38, 651–655.
    [Google Scholar]
  17. Vernon, S. D., Farkas, D. H., Unger, E. R., Chan, V., Miller, D. L., Chen, Y. P., Blackburn, G. F. & Reeves, W. C. ( 2003; ). Bioelectronic DNA detection of human papillomaviruses using eSensor: a model system for detection of multiple pathogens. BMC Infect Dis 3, 12.[CrossRef]
    [Google Scholar]
  18. Walboomers, J. M., Jacobs, M. V., Manos, M. M. & 7 other authors ( 1999; ). Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189, 12–19.[CrossRef]
    [Google Scholar]
  19. Wallace, J., Woda, B. A. & Pihan, G. ( 2005; ). Facile, comprehensive, high-throughput genotyping of human genital papillomaviruses using spectrally addressable liquid bead microarrays. J Mol Diagn 7, 72–80.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46493-0
Loading
/content/journal/jmm/10.1099/jmm.0.46493-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error