1887

Abstract

Three cases of symptomatic toxoplasmic lymphadenitis, together with a serologic profile of recent infection, are described, for which quantitative real-time PCR (LightCycler PCR) targeting different parasite genes was designed, in order to quantify DNA in acute and follow-up blood specimens. Similar parasite gene kinetics and DNA concentrations were observed in the patients studied. However, the profile of each target gene investigated was different. While the level of B1 DNA remained elevated for the entire time of observation, irrespective of clinical and serologic resolution, the SAG-1 gene was detected at the end of acute symptomatic disease, overlapping with a strong anti- IgA antibody response, and persisting for over 3 months after infection and clinical recovery. With respect to the two bradyzoite genes investigated (SAG-4 and MAG-1), levels peaked during the symptomatic phase, but did not fall until 2 or 3 months of follow up. The real-time PCR assay with new alternative targets to the B1 gene may have potential for monitoring the clinical outcome of disease and for providing molecular information regarding the actual state of infection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46482-0
2006-06-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/6/771.html?itemId=/content/journal/jmm/10.1099/jmm.0.46482-0&mimeType=html&fmt=ahah

References

  1. Burg J. L., Grover C. M., Pouletty P., Boothroyd J. C. 1989; Direct and sensitive detection of a pathogenic protozoan, Toxoplasma gondii , by polymerase chain reaction. J Clin Microbiol 27:1787–1792
    [Google Scholar]
  2. Contini C., Cultrera R., Seraceni S. D., Segala R., Romani E., Fainardi P., Cinque A., Lazzarin A., Delia S. 2002; The role of stage specific oligonucleotide primers in providing effective laboratory support for the molecular diagnosis of reactivated Toxoplasma gondii encephalitis in AIDS patients. J Med Microbiol 51:879–890
    [Google Scholar]
  3. Contini C., Seraceni S., Cultrera R., Incorvaia C., Sebastiani A., Picot S. 2005; Evaluation of a real-time PCR-based assay using the Lightcycler system for detection of Toxoplasma gondii bradyzoite genes in blood specimens from patients with toxoplasmic retinochoroiditis. Int J Parasitol 35:275–283 [CrossRef]
    [Google Scholar]
  4. Costa J. M., Paustas C., Ernault P., Foulet F., Cordonnier C., Bretagne S. 2000; Real-time PCR for diagnosis and follow-up of Toxoplasma reactivation after allogenic stem cell transplantation using fluorescence resonance energy transfer hybridization probes. J Clin Microbiol 8:2929–2932
    [Google Scholar]
  5. Durlach R. A., Kaufer F., Carral L., Hirt J. 2003; Toxoplasmic lymphadenitis – clinical and serologic profile. Clin Microbiol Infect 9:625–631 [CrossRef]
    [Google Scholar]
  6. Foudrinier F., Aubert D., Puygauthier-Toubas D., Rouger C., Beguinot I., Halbout P., Lemaire P., Marx-Chemla C., Pinon J. M. 1996; Detection of Toxoplasma gondii in immunodeficient subjects by gene amplification: influence of therapeutics. Scand J Infect Dis 28:383–386 [CrossRef]
    [Google Scholar]
  7. Gross U., Bohne W., Soëte M., Dubremetz J. F. 1996; Developmental differentiation between tachyzoites and bradyzoites of Toxoplasma gondii . Parasitol Today 12:30–33 [CrossRef]
    [Google Scholar]
  8. Hierl T., Reischl U., Lang P., Hebart H., Stark M., Autenrieth I. B. 2004; Preliminary evaluation of one conventional nested and two real time PCR assays for the detection of Toxoplasma gondii in immunocompromised patients. J Med Microbiol 53:629–632 [CrossRef]
    [Google Scholar]
  9. Kim S. K., Boothroyd J. C. 2005; Stage specific expression of surface antigens by Toxoplasma gondii as a mechanism to facilitate parasite persistence. J Immunol 174:8038–8048 [CrossRef]
    [Google Scholar]
  10. Kupferschmidt O., Kruger D., Held T. K., Ellerbrok H., Siegert W., Janitschke K. 2001; Quantitative detection of Toxoplasma gondii DNA in human body fluids by TaqMan polymerase chain reaction. Clin Microbiol Infect 7:120–124 [CrossRef]
    [Google Scholar]
  11. Mineo J. R., Kasper Lloyd H. 1994; Attachment of Toxoplasma gondii to host cells involves major surface protein, SAG-1 (P-30). Exp Parasitol 79:11–20 [CrossRef]
    [Google Scholar]
  12. Montoya J. G., Remington J. S. 1995; Studies on the serodiagnosis of toxoplasmic lymphadenitis. Clin Infect Dis 20:781–789 [CrossRef]
    [Google Scholar]
  13. Montoya J. G., Huffman H. B., Remington J. S. 2004; Evaluation of the immunoglobulin G avidity test for diagnosis of toxoplasmic lymphadenopathy. J Clin Microbiol 4:4627–4631
    [Google Scholar]
  14. Odberg-Ferragut C., Soete M., Engels A., Samyn B., Loyens A., Van Beeumen J., Camus D., Dubremetz J. F. 1996; Molecular cloning of the Toxoplasma gondii sag-4 gene encoding an 18 kDa bradyzoite specific surface protein. Mol Biochem Parasitol 82:237–244 [CrossRef]
    [Google Scholar]
  15. Parmley S. F., Yang S., Harth G., Sibley D., Sucharzuk A., Remington J. S. 1994; Molecular characterization of a 65-kilodalton Toxoplasma gondii antigen expressed abundantly in the matrix of tissue cysts. Mol Biochem Parasitol 66:283–296 [CrossRef]
    [Google Scholar]
  16. Reischl U., Bretagne S., Krüger D., Ernault P., Costa J. M. 2003; Comparison of two DNA targets for the diagnosis of toxoplasmosis by real-time PCR using fluorescence resonance energy transfer hybridization probes. BMC Infect Dis 3:7 [CrossRef]
    [Google Scholar]
  17. Savva D., Morris J. C., Johnson J. D., Holliman R. E. 1990; Polymerase chain reaction for detection of Toxoplasma gondii . J Med Microbiol 32:25–31 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46482-0
Loading
/content/journal/jmm/10.1099/jmm.0.46482-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error