1887

Abstract

The Liverpool epidemic strain (LES) of has been highly successful at colonizing cystic fibrosis (CF) patients throughout the UK, has replaced previously established strains in CF patients, has caused infections of non-CF parents of CF patients, and can cause greater morbidity in CF than other strains of . Using suppression subtractive hybridization (SSH) to identify strain-specific sequences, a diagnostic test for the LES based on PCR amplification of SSH sequence PS21 had previously been developed. In this study, the SSH sequence database of LES was substantially increased, using both extension of previous sequences and new rounds of subtraction. Of 92 SSH sequences identified as present in the LES but absent from strain PAO1, 25 were assessed for prevalence amongst a strain panel consisting mainly of LES and non-LES CF isolates. Preliminary analysis of genome sequence data indicated that all SSH sequences that were LES specific or found only rarely in other strains of were present on one of three contigs. All of the SSH sequences screened were either unstable amongst LES isolates or were not completely LES specific. Rare false positives were found with the PS21 test. The authors suggest that a second PCR assay designed to detect SSH sequence LESF9 can be used to confirm the identity of the most prevalent CF epidemic lineage in the UK.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46461-0
2006-06-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/6/677.html?itemId=/content/journal/jmm/10.1099/jmm.0.46461-0&mimeType=html&fmt=ahah

References

  1. Al Aloul, M., Crawley, J., Winstanley, C., Hart, C. A., Ledson, M. J. & Walshaw, M. J. ( 2004; ). Increased morbidity associated with chronic infection by an epidemic Pseudomonas aeruginosa strain in CF patients. Thorax 59, 334–336.[CrossRef]
    [Google Scholar]
  2. Armstrong, D., Bell, S., Robinson, M. & 8 other authors ( 2003; ). Evidence for spread of a clonal strain of Pseudomonas aeruginosa among cystic fibrosis clinics. J Clin Microbiol 41, 2266–2267.[CrossRef]
    [Google Scholar]
  3. Bender, C., Rangaswamy, V. & Loper, J. ( 1999; ). Polyketide production by plant-associated pseudomonads. Annu Rev Phytopathol 37, 175–196.[CrossRef]
    [Google Scholar]
  4. Cavenagh, M. M. & Miller, R. V. ( 1986; ). Specialized transduction of Pseudomonas aeruginosa PAO by bacteriophage D3. J Bacteriol 165, 448–452.
    [Google Scholar]
  5. Chambers, D., Scott, F., Bangur, R. & 7 other authors ( 2005; ). Factors associated with infection by Pseudomonas aeruginosa in adult cystic fibrosis. Eur Respir J 26, 651–656.[CrossRef]
    [Google Scholar]
  6. Cheng, K., Smyth, R. L., Govan, J. R., Doherty, C., Winstanley, C., Denning, N., Heaf, D. P., van Saene, H. & Hart, C. A. ( 1996; ). Spread of beta-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. Lancet 348, 639–642.[CrossRef]
    [Google Scholar]
  7. Choi, J. Y., Sifri, C. D., Goumnerov, B. C., Rahme, L. G., Ausubel, F. M. & Calderwood, S. B. ( 2002; ). Identification of virulence genes in a pathogenic strain of Pseudomonas aeruginosa by representational difference analysis. J Bacteriol 184, 952–961.[CrossRef]
    [Google Scholar]
  8. Croft, L., Beatson, S. A., Whitchurch, C. B., Huang, B., Blakeley, R. L. & Mattick, J. S. ( 2000; ). An interactive web-based Pseudomonas aeruginosa genome database: discovery of new genes, pathways and structures. Microbiology 146, 2351–2364.
    [Google Scholar]
  9. Edenborough, F. P., Stone, H. R., Kelly, S. J., Zadik, P., Doherty, C. J. & Govan, J. R. ( 2004; ). Genotyping of Pseudomonas aeruginosa in cystic fibrosis suggests need for segregation. J Cyst Fibros 3, 37–44.
    [Google Scholar]
  10. Ernst, R. K., D'Argenio, D. A., Ichikawa, J. K. & 12 other authors ( 2003; ). Genome mosaicism is conserved but not unique in Pseudomonas aeruginosa isolates from the airways of young children with cystic fibrosis. Environ Microbiol 5, 1341–1349.[CrossRef]
    [Google Scholar]
  11. Espinosa-Urgel, M., Salido, A. & Ramos, J. L. ( 2000; ). Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol 182, 2363–2369.[CrossRef]
    [Google Scholar]
  12. Jones, A. M., Govan, J. R., Doherty, C. J., Dodd, M. E., Isalska, B. J., Stanbridge, T. N. & Webb, A. K. ( 2001; ). Spread of a multiresistant strain of Pseudomonas aeruginosa in an adult cystic fibrosis clinic. Lancet 358, 557–558.[CrossRef]
    [Google Scholar]
  13. Klee, S. R., Nassif, X., Kusecek, B., Merker, P., Beretti, J. L., Achtman, M. & Tinsley, C. R. ( 2000; ). Molecular and biological analysis of eight genetic islands that distinguish Neisseria meningitidis from the closely related pathogen Neisseria gonorrhoeae. Infect Immun 68, 2082–2095.[CrossRef]
    [Google Scholar]
  14. Klockgether, J., Reva, O., Larbig, K. & Tümmler, B. ( 2004; ). Sequence analysis of the mobile genome island pKLC102 of Pseudomonas aeruginosa C. J Bacteriol 186, 518–534.[CrossRef]
    [Google Scholar]
  15. Kropinski, A. M. ( 2000; ). Sequence of the genome of the temperate, serotype-converting, Pseudomonas aeruginosa bacteriophage D3. J Bacteriol 182, 6066–6074.[CrossRef]
    [Google Scholar]
  16. Kus, J. V., Tullis, E., Cvitkovitch, D. G. & Burrows, L. L. ( 2004; ). Significant differences in type IV pilin allele distribution among Pseudomonas aeruginosa isolates from cystic fibrosis (CF) versus non-CF patients. Microbiology 150, 1315–1326.[CrossRef]
    [Google Scholar]
  17. Larbig, K. D., Christmann, A., Johann, A., Klockgether, J., Hartsch, T., Merkl, R., Wiehlmann, L., Fritz, H. J. & Tümmler, B. ( 2002; ). Gene islands integrated into tRNAGly genes confer genome diversity on a Pseudomonas aeruginosa clone. J Bacteriol 184, 6665–6680.[CrossRef]
    [Google Scholar]
  18. Lewis, D. A., Jones, A., Parkhill, J., Speert, D. P., Govan, J. R., Lipuma, J. J., Lory, S., Webb, A. K. & Mahenthiralingam, E. ( 2005; ). Identification of DNA markers for a transmissible Pseudomonas aeruginosa cystic fibrosis strain. Am J Respir Cell Mol Biol 33, 56–64.[CrossRef]
    [Google Scholar]
  19. Liang, X., Pham, X. Q., Olson, M. V. & Lory, S. ( 2001; ). Identification of a genomic island present in the majority of pathogenic isolates of Pseudomonas aeruginosa. J Bacteriol 183, 843–853.[CrossRef]
    [Google Scholar]
  20. Locht, C., Bertin, P., Menozzi, F. D. & Renauld, G. ( 1993; ). The filamentous haemagglutinin, a multifaceted adhesion produced by virulent Bordetella spp. Mol Microbiol 9, 653–660.[CrossRef]
    [Google Scholar]
  21. McCallum, S. J., Corkill, J., Gallagher, M., Ledson, M. J., Hart, C. A. & Walshaw, M. J. ( 2001; ). Superinfection with a transmissible strain of Pseudomonas aeruginosa in adults with cystic fibrosis chronically colonised by P. aeruginosa. Lancet 358, 558–560.[CrossRef]
    [Google Scholar]
  22. McCallum, S. J., Gallagher, M. J., Corkill, J. E., Hart, C. A., Ledson, M. J. & Walshaw, M. J. ( 2002; ). Spread of an epidemic Pseudomonas aeruginosa strain from a patient with cystic fibrosis (CF) to non-CF relatives. Thorax 57, 559–560.[CrossRef]
    [Google Scholar]
  23. Nakayama, K., Takashima, K., Ishihara, H. & 7 other authors ( 2000; ). The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol 38, 213–231.[CrossRef]
    [Google Scholar]
  24. Nelson, K. E., Weinel, C., Paulsen, I. T. & 40 other authors ( 2002; ). Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4, 799–808.[CrossRef]
    [Google Scholar]
  25. Newton, G. J., Daniels, C., Burrows, L. L., Kropinski, A. M., Clarke, A. J. & Lam, J. S. ( 2001; ). Three-component-mediated serotype conversion in Pseudomonas aeruginosa by bacteriophage D3. Mol Microbiol 39, 1237–1247.[CrossRef]
    [Google Scholar]
  26. O'Carroll, M. R., Syrmis, M. W., Wainwright, C. E., Greer, R. M., Mitchell, P., Coulter, C., Sloots, T. P., Nissen, M. D. & Bell, S. C. ( 2004; ). Clonal strains of Pseudomonas aeruginosa in paediatric and adult cystic fibrosis units. Eur Respir J 24, 101–106.[CrossRef]
    [Google Scholar]
  27. Panagea, S., Winstanley, C., Parsons, Y. N., Walshaw, M. J., Ledson, M. J. & Hart, C. A. ( 2003; ). PCR-based detection of a cystic fibrosis epidemic strain of Pseudomonas aeruginosa. Mol Diagn 7, 195–200.[CrossRef]
    [Google Scholar]
  28. Parkhill, J., Achtman, M., James, K. D. & 25 other authors ( 2000; ). Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404, 502–506.[CrossRef]
    [Google Scholar]
  29. Parsons, Y. N., Panagea, S., Smart, C. H. M., Walshaw, M. J., Hart, C. A. & Winstanley, C. ( 2002; ). Use of subtractive hybridization to identify a diagnostic probe for a cystic fibrosis epidemic strain of Pseudomonas aeruginosa. J Clin Microbiol 40, 4607–4611.[CrossRef]
    [Google Scholar]
  30. Potvin, E., Lehoux, D. E., Kukavica-Ibrulj, I., Richard, K. L., Sanschagrin, F., Lau, G. W. & Levesque, R. C. ( 2003; ). In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ Microbiol 5, 1294–1308.[CrossRef]
    [Google Scholar]
  31. Rahme, L. G., Stevens, E. J., Wolfort, S. F., Shao, J., Tompkins, R. G. & Ausubel, F. M. ( 1995; ). Common virulence factors for bacterial pathogenicity in plants and animals. Science 268, 1899–1902.[CrossRef]
    [Google Scholar]
  32. Römling, U., Wingender, J., Muller, H. & Tümmler, B. ( 1994; ). A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl Environ Microbiol 60, 1734–1738.
    [Google Scholar]
  33. Salunkhe, P., Smart, C. H. M., Morgan, J. A. W., Panagea, S., Walshaw, M. J., Hart, C. A., Geffers, R., Tümmler, B. & Winstanley, C. ( 2005; ). A cystic fibrosis epidemic strain of Pseudomonas aeruginosa displays enhanced virulence and antimicrobial resistance. J Bacteriol 187, 4908–4920.[CrossRef]
    [Google Scholar]
  34. Scott, F. W. & Pitt, T. L. ( 2004; ). Identification and characterization of transmissible Pseudomonas aeruginosa strains in cystic fibrosis patients in England and Wales. J Med Microbiol 53, 609–615.[CrossRef]
    [Google Scholar]
  35. Smith, E. E., Sims, E. H., Spencer, D. H., Kaul, R. & Olson, M. V. ( 2005; ). Evidence for diversifying selection at the pyoverdine locus of Pseudomonas aeruginosa. J Bacteriol 187, 2138–2147.[CrossRef]
    [Google Scholar]
  36. Spencer, D. H., Kas, A., Smith, E. E., Raymond, C. K., Sims, E. H., Hastings, M., Burns, J. L., Kaul, R. & Olson, M. V. ( 2003; ). Whole-genome sequence variation among multiple isolates of Pseudomonas aeruginosa. J Bacteriol 185, 1316–1325.[CrossRef]
    [Google Scholar]
  37. Stover, C. K., Pham, X. Q., Erwin, A. L. & 28 other authors ( 2000; ). Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406, 959–964.[CrossRef]
    [Google Scholar]
  38. Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P. A., Murray, B. E., Persing, D. H. & Swaminathan, B. ( 1995; ). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33, 2233–2239.
    [Google Scholar]
  39. Wang, P. W., Chu, L. & Guttman, D. S. ( 2004; ). Complete sequence and evolutionary genomic analysis of the Pseudomonas aeruginosa transposable bacteriophage D3112. J Bacteriol 186, 400–410.[CrossRef]
    [Google Scholar]
  40. Weinel, C., Nelson, K. E. & Tümmler, B. ( 2002; ). Global features of the Pseudomonas putida KT2440 genome sequence. Environ Microbiol 4, 809–818.[CrossRef]
    [Google Scholar]
  41. Winstanley, C. ( 2002; ). Spot the difference: applications of subtractive hybridization to the study of bacterial pathogens. J Med Microbiol 51, 459–467.
    [Google Scholar]
  42. Winstanley, C. & Hart, C. A. ( 2000; ). Presence of type III secretion genes in Burkholderia pseudomallei correlates with Ara phenotypes. J Clin Microbiol 38, 883–885.
    [Google Scholar]
  43. Wolfgang, M. C., Kulasekara, B. R., Liang, X., Boyd, D., Wu, K., Yang, Q., Miyada, C. G. & Lory, S. ( 2003; ). Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100, 8484–8489.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46461-0
Loading
/content/journal/jmm/10.1099/jmm.0.46461-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error