1887

Abstract

The fungistatic and fungicidal activity of -chlorotaurine (NCT), a long-lived oxidant produced by stimulated neutrophils, was investigated. Physiological concentrations (75–100 μM) of NCT showed clear fungicidal activity against a range of isolates. Moreover, killing by NCT was significantly increased in the presence of ammonium chloride, explained by the formation of monochloramine by halogenation of ammonium. One clinical isolate of was characterized for the production of the immunosuppressive agent gliotoxin, and NCT was shown to cause destruction of gliotoxin, possibly via reduction of the disulphide bridge. Because of its endogenous nature and its high antifungal activity, NCT appears to be a good choice for topical treatment of infections, and the results of this study further substantiate its therapeutic efficacy.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46405-0
2006-07-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/7/913.html?itemId=/content/journal/jmm/10.1099/jmm.0.46405-0&mimeType=html&fmt=ahah

References

  1. Amitani, R., Murayama, T., Nawada, R., Lee, W. J., Niimi, A., Suzuki, K., Tanaka, E. & Kuze, F. ( 1995; ). Aspergillus culture filtrates and sputum sols from patients with pulmonary aspergillosis cause damage to human respiratory ciliated epithelium in vitro. Eur Respir J 8, 1681–1687.[CrossRef]
    [Google Scholar]
  2. Brakhage, A. A. & Langfelder, K. ( 2002; ). Menacing mold: the molecular biology of Aspergillus fumigatus. Annu Rev Microbiol 56, 433–455.[CrossRef]
    [Google Scholar]
  3. Cohen, B. E. ( 1998; ). Amphotericin B toxicity and lethality: a tale of two channels. Int J Pharm 162, 95–106.[CrossRef]
    [Google Scholar]
  4. Daly, P. & Kavanagh, K. ( 2001; ). Pulmonary aspergillosis: clinical presentation, diagnosis and therapy. Br J Biomed Sci 58, 197–205.
    [Google Scholar]
  5. Fraser, R. S. ( 1993; ). Pulmonary aspergillosis: pathologic and pathogenetic features. Pathol Annu 28, 231–277.
    [Google Scholar]
  6. Gottardi, W. & Nagl, M. ( 2002; ). Chemical properties of N-chlorotaurine sodium, a key compound in the human defence system. Arch Pharm Pharm (Weinheim) 9, 411–421.
    [Google Scholar]
  7. Gottardi, W. & Nagl, M. ( 2005; ). Chlorine covers on living bacteria: the initial step in antimicrobial action of active chlorine compounds. J Antimicrob Chemother 55, 475–482.[CrossRef]
    [Google Scholar]
  8. Grisham, M., Jefferson, M., Melton, D. & Thomas, E. ( 1984; ). Chlorination of endogenous amines by isolated neutrophils. Ammonia-dependent bactericidal, cytotoxic and cytolytic activities of the chloramines. J Biol Chem 259, 10404–10413.
    [Google Scholar]
  9. Hogan, L. H., Klein, B. S. & Levitz, S. M. ( 1996; ). Virulence factors of medically important fungi. Clin Microbiol Rev 9, 469–488.
    [Google Scholar]
  10. Klebanoff, S. J. ( 1980; ). Oxygen metabolism and the toxic properties of phagocytes. Ann Intern Med 93, 480–489.[CrossRef]
    [Google Scholar]
  11. Marcinkiewiez, J. ( 2003; ). Prostanoids and MPO-halide system products as a link between innate and adaptive immunity. Immunol Lett 89, 187–191.[CrossRef]
    [Google Scholar]
  12. Müllbacher, A. & Eichner, R. D. ( 1984; ). Immunosuppression in vitro by a metabolite of a human pathogenic fungi. Proc Natl Acad Sci U S A 81, 3835–3837.[CrossRef]
    [Google Scholar]
  13. Nagl, M. & Gottardi, W. ( 1996; ). Enhancement of the bactericidal efficacy of N-chlorotaurine by inflammation samples and selected N-H compounds. Hyg Med 21, 597–605.
    [Google Scholar]
  14. Nagl, M., Hess, M. W., Pfaller, K., Hengster, P. & Gottardi, W. ( 2000a; ). Bactericidal activity of micromolar N-chlorotaurine: evidence for its antimicrobial function in the human defence system. Antimicrob Agents Chemother 44, 2507–2513.[CrossRef]
    [Google Scholar]
  15. Nagl, M., Teuchner, B., Pottinger, E., Ulmer, H. & Gottardi, W. ( 2000b; ). Tolerance of N-chlorotaurine, a new antimicrobial agent, in infectious conjunctivitis – a phase II pilot study. Ophthalmologica 214, 111–114.[CrossRef]
    [Google Scholar]
  16. Nagl, M., Lass-Florl, C., Neher, A., Gunkel, A. & Gottardi, W. ( 2001; ). Enhanced fungicidal activity of N-chlorotaurine in nasal secretion. J Antimicrob Chemother 47, 871–874.[CrossRef]
    [Google Scholar]
  17. Nagl, M., Gruber, A., Fuchs, A., Lell, C. P., Lamberger, E. M., Borg-von Zepelin, M. & Wurzner, R. ( 2002; ). Impact of N-chlorotaurine on viability and production of secreted aspartyl proteinases of Candida spp. Antimicrob Agents Chemother 46, 1996–1999.[CrossRef]
    [Google Scholar]
  18. Nagl, M., Nguyen, V. A., Gottardi, W., Ulmer, H. & Hopfl, R. ( 2003; ). Tolerability and efficacy of N-chlorotaurine in comparison with chloramine T for the treatment of chronic leg ulcers with a purulent coating: a randomized phase II study. Br J Dermatol 149, 590–597.[CrossRef]
    [Google Scholar]
  19. Neher, A., Nagl, M., Appenroth, E., Gstottner, M., Wischatta, M., Reisigl, F., Schindler, M., Ulmer, H. & Stephan, K. ( 2004; ). Acute otitis externa: efficiency and tolerability of N-chlorotaurine, a novel endogenous antiseptic agent. Laryngoscope 114, 850–854.[CrossRef]
    [Google Scholar]
  20. Nishida, S., Yoshida, L., Shimoyama, T., Nunoi, H., Kobayashi, T. & Tsunawaki, S. ( 2005; ). Fungal metabolite gliotoxin targets flavocytochrome b 558 in the activation of the human neutrophil NADPH oxidase. Infect Immun 73, 235–244.[CrossRef]
    [Google Scholar]
  21. Park, E., Schuller Levis, G. & Quinn, M. R. ( 1995; ). Taurine chlorine inhibits production of nitric oxide and TNF-alpha in activated RAW 264.7 cells by mechanisms that involve transcriptional and translational events. J Immunol 154, 4778–4784.
    [Google Scholar]
  22. Reeves, E. P., Lu, H., Jacobs, H. L. & 7 other authors ( 2002; ). Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416, 291–296.[CrossRef]
    [Google Scholar]
  23. Reeves, E. P., Murphy, T., Daly, P. & Kavanagh, K. ( 2004; ). Amphotericin B enhances the synthesis and release of the immunosuppressive agent gliotoxin from the pulmonary pathogen Aspergillus fumigatus. J Med Microbiol 53, 719–725.[CrossRef]
    [Google Scholar]
  24. Richard, J. L. & DeBey, M. C. ( 1995; ). Production of gliotoxin during pathogenic state in turkey poults by Aspergillus fumigatus, Fresenius. Mycopathologia 129, 111–115.[CrossRef]
    [Google Scholar]
  25. Richard, J. L., Dvorak, T. J. & Ross, P. F. ( 1996; ). Natural occurrence of gliotoxin in turkeys infected with Aspergillus fumigatus, Fresenius. Mycopathologia 134, 167–170.[CrossRef]
    [Google Scholar]
  26. Sabatelli, F. J., Leobenberg, D., Mendrick, A., Patel, R., Norris, C. & McNicholas, P. M. ( 2004; ). In vitro activities of posaconazole, fluconazole, itraconazole, voriconazole, and amphotericin B against approximately 18,000 strains of clinically significant yeasts and moulds. Abstract from 44th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, DC.
  27. Shah, D. T., Glover, D. D. & Larsen, B. ( 1995; ). In situ mycotoxin production by Candida albicans in women with vaginitis. Gynecol Obstet Invest 39, 67–69.[CrossRef]
    [Google Scholar]
  28. Sutton, P., Waring, P. & Müllbacher, A. ( 1996; ). Exacerbation of invasive aspergillosis by the immunosuppressive fungal metabolite, gliotoxin. Immunol Cell Biol 74, 318–322.[CrossRef]
    [Google Scholar]
  29. Test, S., Lampert, M., Ossanna, P., Thoene, J. & Weiss, S. ( 1984; ). Generation of nitrogen-chlorine oxidants by human phagocytes. J Clin Invest 74, 1341–1349.[CrossRef]
    [Google Scholar]
  30. Teuchner, B., Nagl, M., Schidlbauer, A. & 8 other authors ( 2005; ). Tolerability and efficacy of N-chlorotaurine in epidermic keratoconjunctivitis – a double-blind, randomized, phase-2 clinical trial. J Ocul Pharmacol Ther 21, 157–165.[CrossRef]
    [Google Scholar]
  31. Wagner, D. K., Collins-Lech, C. & Sohnle, P. G. ( 1986; ). Inhibition of neutrophil killing of Candida albicans pseudohyphae by substances which quench hypochlorous acid and chloramines. Infect Immun 51, 731–735.
    [Google Scholar]
  32. Waring, P. ( 1990; ). DNA fragmentation induced in macrophages by gliotoxin does not require protein synthesis and is preceded by raised inositol triphosphate levels. J Biol Chem 265, 14476–14480.
    [Google Scholar]
  33. Waring, P. & Beaver, J. ( 1996; ). Gliotoxin and related epipolythiodioxopiperazines. Gen Pharmac 27, 1311–1316.[CrossRef]
    [Google Scholar]
  34. Waring, P., Eichner, R. D., Müllbacher, A. & Sjaarda, A. ( 1988; ). Gliotoxin induces apoptosis in macrophages unrelated to its antiphagocytic properties. J Biol Chem 263, 18493–18499.
    [Google Scholar]
  35. Washburn, R. G., Gallin, J. I. & Bennett, J. E. ( 1987; ). Oxidative killing of Aspergillus fumigatus proceeds by parallel myeloperoxidase-dependent and independent pathways. Infect Immun 55, 2088–2092.
    [Google Scholar]
  36. Watanbe, A., Kamei, K., Sekine, T., Waku, M., Nishimura, K., Miyaji, M. & Kuriyama, T. ( 2003; ). Immunosuppressive substances in Aspergillus fumigatus culture filtrate. J Infect Chemother 9, 114–121.[CrossRef]
    [Google Scholar]
  37. Weiss, S., Klein, R., Slivka, A. & Wei, M. ( 1982; ). Chlorination of taurine by human neutrophils. J Clin Invest 70, 598–607.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46405-0
Loading
/content/journal/jmm/10.1099/jmm.0.46405-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error