1887

Abstract

The IS repetitive element is present in multiple copies in most complex bacteria, except for strains, which usually contain a single copy of IS located on a 1·9 kb II fragment of the direct repeat region. IS transposition can disrupt coding regions and is a major force of genomic variation. In a previous work it was demonstrated that phospholipase C genes are preferential loci for IS transposition in clinical strains. Bacterial phospholipase C enzymes participate in pathogenic mechanisms used by different organisms, and have been implicated in intracellular survival, cytolysis and cell-to-cell spread. Four phospholipase C genes (, , and ) were detected in the genomes of , , and ‘’. and the vaccine strain Bacillus Calmette–Guérin contain only the gene. In the present work, the existence of IS insertions within , the unique phospholipase C gene of , has been investigated by PCR, Southern blot hybridization and sequencing analysis. In 18 (7·3 %) of 245 isolates analysed, the gene was interrupted by the insertion of one copy of IS, which in all cases was transposed in the same orientation and at the same position, 1 972 894, relative to the genome of AF2122/97. These 18 isolates were distributed in 6 different spoligotype patterns and contained 4 to 8 IS copies. In contrast, strains showing an intact gene contained one (87 %), two (9·4 %) or three (2·4 %) IS copies, and only a single isolate (1·2 %) had four IS copies. The implications of gene disruption in have not been fully investigated, but no differences in the organ distribution of the disease were detected when animals infected with strains from the same spoligotype patterns bearing  : : IS and intact were compared.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46364-0
2006-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/4/451.html?itemId=/content/journal/jmm/10.1099/jmm.0.46364-0&mimeType=html&fmt=ahah

References

  1. Behr M. A., Wilson M. A., Gill W. P., Salamon H., Schoolnik G. K., Rane S., Small P. M. 1999; Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:1520–1523 [CrossRef]
    [Google Scholar]
  2. Berka R. M., Gray G. L., Vasil M. L. 1981; Studies of phospholipase C (heat-labile hemolysin) in Pseudomonas aeruginosa . Infect Immun 34:1071–1074
    [Google Scholar]
  3. Brosch R., Gordon S. V., Marmiesse M. & 12 other authors; 2002; A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 99:3684–3689 [CrossRef]
    [Google Scholar]
  4. Centro Panamericano de Zoonosis 1973; Métodos de laboratorio de micobacteriologia veterinaria para el aislamiento e identificación de micobacterias. In Serie de Monografias Científicas y Técnicas pp.  48 Buenos Aires: Panamerican Health Organization;
    [Google Scholar]
  5. Cole S. T., Brosch R., Parkhill J. & 39 other authors; 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  6. Eisenach K. D., Cave M. D., Bates J. H., Crawford J. T. 1990; Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobacterium tuberculosis . J Infect Dis 161:977–981 [CrossRef]
    [Google Scholar]
  7. Fang Z., Morrison N., Watt B., Doig C., Forbes K. J. 1998; IS 6110 transposition and evolutionary scenario of the direct repeat locus in a group of closely related Mycobacterium tuberculosis strains. J Bacteriol 180:2102–2109
    [Google Scholar]
  8. Fang Z., Kenna D. T., Doig C., Smittipat D. N., Palittapongarnpim P., Watt B., Forbes K. J. 2001; Molecular evidence for independent occurrence of IS 6110 insertions at the same sites of the genome of Mycobacterium tuberculosis in different clinical isolates. J Bacteriol 183:5279–5284 [CrossRef]
    [Google Scholar]
  9. Garnier T., Eiglmeier K., Camus J. C. & 19 other authors; 2003; The complete genome sequence of Mycobacterium bovis . Proc Natl Acad Sci U S A 100:7877–7882 [CrossRef]
    [Google Scholar]
  10. Gordon S. V., Brosch R., Billault A., Garnier T., Eiglmeier K., Cole S. T. 1999; Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol 32:643–655 [CrossRef]
    [Google Scholar]
  11. Groenen P. M., Bunschoten A. E., van Soolingen D., van Embden J. D. 1993; Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis ; application for strain differentiation by a novel typing method. Mol Microbiol 10:1057–1065 [CrossRef]
    [Google Scholar]
  12. Haddad N., Ostyn A., Karoui C., Masselot M., Thorel M. F., Hughes S. L., Inwald J., Hewinson R. G., Durand B. 2001; Spoligotype diversity of Mycobacterium bovis strains isolated in France from 1979 to 2000. J Clin Microbiol 39:3623–3632 [CrossRef]
    [Google Scholar]
  13. Hermans P. W., van Soolingen D., Bik E. M., de Haas P. E., Dale J. W., van Embden J. D. 1991; Insertion element IS 987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect Immun 59:2695–2705
    [Google Scholar]
  14. Ho T. B., Robertson B. D., Taylor G. M., Shaw R. J., Young D. B. 2000; Comparison of Mycobacterium tuberculosis genomes reveals frequent deletions in a 20 kb variable region in clinical isolates. Yeast 17:272–282
    [Google Scholar]
  15. Kamerbeek J., Schouls L., Kolk A. & 8 other authors; 1997; Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35:907–914
    [Google Scholar]
  16. Kong Y., Cave M. D., Yang D. & 7 other authors; 2005; Distribution of insertion- and deletion-associated genetic polymorphisms among four Mycobacterium tuberculosis phospholipase C genes and associations with extrathoracic tuberculosis: a population-based study. J Clin Microbiol 43:6048–6053 [CrossRef]
    [Google Scholar]
  17. Lari N., Rindi L., Garzelli C. 2001; Identification of one insertion site of IS 6110 in Mycobacterium tuberculosis H37Ra and analysis of the RvD2 deletion in M. tuberculosis clinical isolates. J Med Microbiol 50:805–811
    [Google Scholar]
  18. Logan A. J., Williamson E. D., Titball R. W., Percival D. A., Shuttleworth A. D., Conlan J. W., Kelly D. C. 1991; Epitope mapping of the alpha-toxin of Clostridium perfringens . Infect Immun 59:4338–4342
    [Google Scholar]
  19. Nguyen D., Brassard P., Menzies D., Thibert L., Warren R., Mostowy S., Behr M. 2004; Genomic characterization of an endemic Mycobacterium tuberculosis strain: evolutionary and epidemiologic implications. J Clin Microbiol 42:2573–2580 [CrossRef]
    [Google Scholar]
  20. Raynaud C., Guilhot C., Rauzier J., Bordat Y., Pelicic V., Manganelli R., Smith I., Gicquel B., Jackson M. 2002; Phospholipases C are involved in the virulence of Mycobacterium tuberculosis . Mol Microbiol 45:203–217 [CrossRef]
    [Google Scholar]
  21. Sampson S. L., Warren R. M., Richardson M., van der Spuy G. D., van Helden P. D. 1999; Disruption of coding regions by IS 6110 insertion in Mycobacterium tuberculosis . Tuber Lung Dis 79:349–359 [CrossRef]
    [Google Scholar]
  22. Talarico S., Durmaz R., Yang Z. 2005; Insertion- and deletion-associated genetic diversity of Mycobacterium tuberculosis phospholipase C-encoding genes among 106 clinical isolates from Turkey. J Clin Microbiol 43:533–538 [CrossRef]
    [Google Scholar]
  23. van Embden J. D. A., Cave M. D., Crawford J. T. & 8 other authors; 1993; Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 31:406–409
    [Google Scholar]
  24. van Embden J. D. A., van Gorkom T., Kremer K., Jansen R., van der Zeijst B. A. M., Schouls L. M. 2000; Genetic variation and evolutionary origin of the direct repeat locus of Mycobacterium tuberculosis complex bacteria. J Bacteriol 182:2393–2401 [CrossRef]
    [Google Scholar]
  25. Vazquez-Boland J. A., Kocks C., Dramsi S., Ohayon H., Geoffroy C., Mengaud J., Cossart P. 1992; Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect Immun 60:219–230
    [Google Scholar]
  26. Vera-Cabrera L., Hernandez-Vera M. A., Welsh O., Johnson W. M., Castro-Garza J. 2001; Phospholipase region of Mycobacterium tuberculosis is a preferential locus for IS 6110 transposition. J Clin Microbiol 39:3499–3504 [CrossRef]
    [Google Scholar]
  27. Vestal A. L. 1975 Procedures for the Isolation and Identification of Mycobacteria Atlanta, GA: Centers for Disease Control;
    [Google Scholar]
  28. Viana-Niero C., de Haas P. E., van Soolingen D., Leao S. C. 2004; Analysis of genetic polymorphisms affecting the four phospholipase C ( plc ) genes in Mycobacterium tuberculosis complex clinical isolates. Microbiology 150:967–978 [CrossRef]
    [Google Scholar]
  29. Wall S., Ghanekar K., McFadden J., Dale J. W. 1999; Context-sensitive transposition of IS 6110 in mycobacteria. Microbiology 145:3169–3176
    [Google Scholar]
  30. Warren R. M., Sampson S. L., Richardson M., van der Spuy G. D., Lombard C. J., Victor T. C., van Helden P. D. 2000; Mapping of IS 6110 flanking regions in clinical isolates of Mycobacterium tuberculosis demonstrates genome plasticity. Mol Microbiol 37:1405–1416 [CrossRef]
    [Google Scholar]
  31. Warren R. M., Streicher E. M., Sampson S. L., van der Spuy G. D., Richardson M., Nguyen D., Behr M. A., Victor T. C., van Helden P. D. 2002; Microevolution of the direct repeat region of Mycobacterium tuberculosis : implications for interpretation of spoligotyping data. J Clin Microbiol 40:4457–4465 [CrossRef]
    [Google Scholar]
  32. Wayne L. G. 1984; Mycobacterial speciation. In The Mycobacteria: a Sourcebook pp  42–43 Edited by Kubica G. P., Wayne L. G. New York: Marcel Dekker;
    [Google Scholar]
  33. Yang Z., Yang D., Kong Y., Zhang L., Marrs C. F., Foxman B., Bates J. H., Wilson F., Cave M. D. 2005; Clinical relevance of Mycobacterium tuberculosis plcD gene mutations. Am J Respir Crit Care Med 171:1436–1442 [CrossRef]
    [Google Scholar]
  34. Yesilkaya H., Dale J. W., Strachan N. J., Forbes K. J. 2005; Natural transposon mutagenesis of clinical isolates of Mycobacterium tuberculosis : how many genes does a pathogen need?. J Bacteriol 187:6726–6732 [CrossRef]
    [Google Scholar]
  35. Zanini M. S., Moreira E. C., Lopes M. T. & 8 other authors; 2001; Mycobacterium bovis : polymerase chain reaction identification in bovine lymphonode biopsies and genotyping in isolates from Southeast Brazil by spolygotyping and restriction fragment length polymorphism. Mem Inst Oswaldo Cruz 96:809–813 [CrossRef]
    [Google Scholar]
  36. Zanini M. S., Moreira E. C., Salas C. E., Lopes M. T., Barouni A. S., Roxo E., Telles M. A., Zumarraga M. J. 2005; Molecular typing of Mycobacterium bovis isolates from South-East Brazil by spoligotyping and RFLP. J Vet Med B Infect Dis Vet Public Health 52:129–133 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46364-0
Loading
/content/journal/jmm/10.1099/jmm.0.46364-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error