1887

Abstract

is the aetiological cause of a wide variety of chronic inflammatory diseases and may be associated with neurological disease. Microbiological and immunological aspects of the interaction between and the central nervous system (CNS) are not well understood because of the lack of a suitable infection model for neuronal studies. In the present study, an infection model was developed in the established microglial cell line EOC 20. Infection of the cells resulted in obvious induction of proinflammatory cytokines. The infection also selectively induced matrix metalloproteinase-9 (MMP-9) but not MMP-2. Moreover, beta interferon, which is known to modulate CNS disease, inhibited induction of MMP-9 following infection. These results support the view that infection may be associated with marked alteration of the ability of microglial cells to enhance cytokine production as well as induction of an MMP.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46348-0
2006-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/7/947.html?itemId=/content/journal/jmm/10.1099/jmm.0.46348-0&mimeType=html&fmt=ahah

References

  1. Bar-Or A., Oliveira E. M., Anderson D. E., Hafler D. A. 1999; Molecular pathogenesis of multiple sclerosis. J Neuroimmunol 100:252–259 [CrossRef]
    [Google Scholar]
  2. Benveniste E. N. 1997; Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J Mol Med 75:165–173 [CrossRef]
    [Google Scholar]
  3. Byrne G. I., Ouellette S. P., Wang Z., Rao J. P., Lu L., Beatty W. L., Hudson A. P. 2001; Chlamydia pneumoniae expresses genes required for DNA replication but not cytokinesis during persistent infection of HEp-2 cells. Infect Immun 69:5423–5429 [CrossRef]
    [Google Scholar]
  4. Clarke I. N., Ward M. E., Lambden P. R. 1988; Molecular cloning and sequence analysis of a developmentally regulated cysteine-rich outer membrane protein from Chlamydia trachomatis . Gene 71:307–314 [CrossRef]
    [Google Scholar]
  5. Grayston J. T. 1996; Chlamydia pneumoniae and atherosclerosis. Rev Med Interne 17 (Suppl. 1):45S–47S
    [Google Scholar]
  6. Hahn D. L., Dodge R. W., Golubjatnikov R. 1991; Association of Chlamydia pneumoniae (strain TWAR) infection with wheezing, asthmatic bronchitis, and adult-onset asthma. JAMA (J Am Med Assoc 266225–230 [CrossRef]
  7. Haranaga S., Yamaguchi H., Ikejima H., Friedman H., Yamamoto Y. 2003; Chlamydia pneumoniae infection of alveolar macrophages: a model. J Infect Dis 187:1107–1115 [CrossRef]
    [Google Scholar]
  8. Hatch T. P., Miceli M., Sublett J. E. 1986; Synthesis of disulfide-bonded outer membrane proteins during the developmental cycle of Chlamydia psittaci and Chlamydia trachomatis . J Bacteriol 165:379–385
    [Google Scholar]
  9. Ikejima H., Haranaga S., Takemura H., Kamo T., Takahashi Y., Friedman H., Yamamoto Y. 2001; PCR-based method for isolation and detection of Chlamydia pneumoniae DNA in cerebrospinal fluids. Clin Diagn Lab Immunol 8:499–502
    [Google Scholar]
  10. Kol A., Sukhova G. K., Lichtman A. H., Libby P. 1998; Chlamydial heat shock protein 60 localizes in human atheroma and regulates macrophage tumor necrosis factor-alpha and matrix metalloproteinase expression. Circulation 98:300–307 [CrossRef]
    [Google Scholar]
  11. Leppert D., Lindberg R. L., Kappos L., Leib S. L. 2001; Matrix metalloproteinases: multifunctional effectors of inflammation in multiple sclerosis and bacterial meningitis. Brain Res Brain Res Rev 36:249–257 [CrossRef]
    [Google Scholar]
  12. O'Keefe G. M., Nguyen V. T., Benveniste E. N. 1999; Class II transactivator and class II MHC gene expression in microglia: modulation by the cytokines TGF-beta, IL-4, IL-13 and IL-10. Eur J Immunol 29:1275–1285 [CrossRef]
    [Google Scholar]
  13. Olivas E., Chen B. B., Walker W. S. 1995; Use of the Pannell-Milstein roller bottle apparatus to produce high concentrations of the CSF-1, the mouse macrophage growth factor. J Immunol Methods 182:73–79 [CrossRef]
    [Google Scholar]
  14. Redecke V., Dalhoff K., Bohnet S., Braun J., Maass M. 1998; Interaction of Chlamydia pneumoniae and human alveolar macrophages: infection and inflammatory response. Am J Respir Cell Mol Biol 19:721–727 [CrossRef]
    [Google Scholar]
  15. Roblin P. M., Dumornay W., Hammerschlag M. R. 1992; Use of HEp-2 cells for improved isolation and passage of Chlamydia pneumoniae . J Clin Microbiol 30:1968–1971
    [Google Scholar]
  16. Rosenberg G. A. 2002a; Matrix metalloproteinases and neuroinflammation in multiple sclerosis. Neuroscientist 8:586–595 [CrossRef]
    [Google Scholar]
  17. Rosenberg G. A. 2002b; Matrix metalloproteinases in neuroinflammation. Glia 39:279–291 [CrossRef]
    [Google Scholar]
  18. Rupp J., Berger M., Reiling N., Gieffers J., Lindschau C., Haller H., Dalhoff K., Maass M. 2004; Cox-2 inhibition abrogates Chlamydia pneumoniae -induced PGE2 and MMP-1 expression. Biochem Biophys Res Commun 320:738–744 [CrossRef]
    [Google Scholar]
  19. Saario R., Toivanen A. 1993; Chlamydia pneumoniae as a cause of reactive arthritis. Br J Rheumatol 32:1112
    [Google Scholar]
  20. Shaw E. I., Dooley C. A., Fischer E. R., Scidmore M. A., Fields K. A., Hackstadt T. 2000; Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle. Mol Microbiol 37:913–925 [CrossRef]
    [Google Scholar]
  21. Sriram S., Stratton C. W., Yao S., Tharp A., Ding L., Bannan J. D., Mitchell W. M. 1999; Chlamydia pneumoniae infection of the central nervous system in multiple sclerosis. Ann Neurol 46:6–14 [CrossRef]
    [Google Scholar]
  22. Sriram S., Yao S. Y., Stratton C., Calabresi P., Mitchell W., Ikejima H., Yamamoto Y. 2002; Comparative study of the presence of Chlamydia pneumoniae in cerebrospinal fluid of patients with clinically definite and monosymptomatic multiple sclerosis. Clin Diagn Lab Immunol 9:1332–1337
    [Google Scholar]
  23. Summersgill J. T., Sahney N. N., Gaydos C. A., Quinn T. C., Ramirez J. A. 1995; Inhibition of Chlamydia pneumoniae growth in HEp-2 cells pretreated with gamma interferon and tumor necrosis factor alpha. Infect Immun 63:2801–2803
    [Google Scholar]
  24. Vehmaan-Kreula P., Puolakkainen M., Sarvas M., Welgus H. G., Kovanen P. T. 2001; Chlamydia pneumoniae proteins induce secretion of the 92-kDa gelatinase by human monocyte-derived macrophages. Arterioscler Thromb Vasc Biol 21:E1–E8 [CrossRef]
    [Google Scholar]
  25. Walker W. S., Gatewood J., Olivas E., Askew D., Havenith C. E. 1995; Mouse microglial cell lines differing in constitutive and interferon-gamma-inducible antigen-presenting activities for naive and memory CD4+ and CD8+ T cells. J Neuroimmunol 63:163–174 [CrossRef]
    [Google Scholar]
  26. Yamamoto Y., Retzlaff C., He P., Klein T. W., Friedman H. 1995; Quantitative reverse transcription-PCR analysis of Legionella pneumophila -induced cytokine mRNA in different macrophage populations by high-performance liquid chromatography. Clin Diagn Lab Immunol 2:18–24
    [Google Scholar]
  27. Zhang J., Hutton G., Zang Y. 2002; A comparison of the mechanisms of action of interferon beta and glatiramer acetate in the treatment of multiple sclerosis. Clin Ther 24:1998–2021 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46348-0
Loading
/content/journal/jmm/10.1099/jmm.0.46348-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error