1887

Abstract

The distribution of 19 major virulence genes and the presence of plasmids were surveyed in 141 serogroup (SG) 1 isolates from patients and water in Queensland, Australia. The results showed that 16 of the virulence genes examined were present in all isolates, suggesting that they are life-essential genes for isolates in the environment and host cells. The 65 kb pathogenicity island identified originally in strain Philadelphia-1 was detected more frequently in isolates from water (44.2 %) than in those from patients (2.7 %), indicating that the 65 kb DNA fragment may aid the survival of in the sampled environment. However, the low frequency of the 65 kb fragment in isolates from patients suggests that the pathogenicity island may not be necessary for to cause disease. Plasmids were not detected in the SG1 isolates from patients or water studied. There was an association of both and with the virulent and predominant genotype detected by amplified fragment length polymorphism, termed AF1, whereas the avirulent common isolate from water termed AF16 did not have or genes, with the exception of one isolate with . It was found that a PCR detection test strategy with and as pathogenesis markers would be useful for determining the infection potential of an isolate.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46310-0
2006-08-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/8/993.html?itemId=/content/journal/jmm/10.1099/jmm.0.46310-0&mimeType=html&fmt=ahah

References

  1. Bachman, M. A. & Swanson, M. S. ( 2004; ). Genetic evidence that Legionella pneumophila RpoS modulates expression of the transmission phenotype in both the exponential phase and the stationary phase. Infect Immun 72, 2468–2476.[CrossRef]
    [Google Scholar]
  2. Bandyopadhyay, P., Xiao, H., Coleman, H. A., Price-Whelan, A. & Steinman, H. M. ( 2004; ). Icm/dot-independent entry of Legionella pneumophila into amoeba and macrophage hosts. Infect Immun 72, 4541–4551.[CrossRef]
    [Google Scholar]
  3. Bezanson, G., Burbridge, S., Haldane, D., Yoell, C. & Marrie, T. ( 1992; ). Diverse populations of Legionella pneumophila present in the water of geographically clustered institutions served by the same water reservoir. J Clin Microbiol 30, 570–576.
    [Google Scholar]
  4. Brassinga, A. K. C., Hiltz, M. F., Sisson, G. R., Morash, M. G., Hill, N., Garduno, E., Edelstein, P. H., Garduno, R. A. & Hoffman, P. S. ( 2003; ). A 65-kilobase pathogenicity island is unique to Philadelphia-1 strains of Legionella pneumophila. J Bacteriol 185, 4630–4637.[CrossRef]
    [Google Scholar]
  5. Brown, A., Vickers, R. M., Elder, E. M., Lema, M. & Garrity, G. M. ( 1982; ). Plasmid and surface antigen markers of endemic and epidemic Legionella pneumophila strains. J Clin Microbiol 16, 230–235.
    [Google Scholar]
  6. Cazalet, C., Rusniok, C., Bruggemann, H. & 11 other authors ( 2004; ). Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 36, 1165–1173.[CrossRef]
    [Google Scholar]
  7. Chen, J., de Felipe, K. S., Clarke, M., Lu, H., Anderson, O. R., Segal, G. & Shuman, H. A. ( 2004; ). Legionella effectors that promote nonlytic release from protozoa. Science 303, 1358–1361.[CrossRef]
    [Google Scholar]
  8. Chien, M., Morozova, I., Shi, S. & 34 other authors ( 2004; ). The genomic sequence of the accidental pathogen Legionella pneumophila. Science 305, 1966–1968.[CrossRef]
    [Google Scholar]
  9. Cianciotto, N. P. ( 2001; ). Pathogenicity of Legionella pneumophila. Int J Med Microbiol 291, 331–343.[CrossRef]
    [Google Scholar]
  10. Cianciotto, N. P. & Fields, B. S. ( 1992; ). Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages. Proc Natl Acad Sci U S A 89, 5188–5191.[CrossRef]
    [Google Scholar]
  11. Cirillo, S. L. G., Lum, J. & Cirillo, J. D. ( 2000; ). Identification of novel loci involved in entry by Legionella pneumophila. Microbiology 146, 1345–1359.
    [Google Scholar]
  12. Cirillo, S. L., Bermudez, L. E., El-Etr, S. H., Duhamel, G. E. & Cirillo, J. D. ( 2001; ). Legionella pneumophila entry gene rtxA is involved in virulence. Infect Immun 69, 508–517.[CrossRef]
    [Google Scholar]
  13. Conover, G. M., Derre, I., Vogel, J. P. & Isberg, R. R. ( 2003; ). The Legionella pneumophila LidA protein: a translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity. Mol Microbiol 48, 305–321.[CrossRef]
    [Google Scholar]
  14. Dowling, J. N., Saha, A. K. & Glew, R. H. ( 1992; ). Virulence factors of the family Legionellaceae. Microbiol Rev 56, 32–60.
    [Google Scholar]
  15. Fields, B. S., Benson, R. F. & Besser, R. E. ( 2002; ). Legionella and Legionnaires' disease: 25 years of investigation. Clin Microbiol Rev 15, 506–526.[CrossRef]
    [Google Scholar]
  16. Fliermans, C. B., Cherry, W. B., Orrison, L. H., Smith, S. J., Tison, D. L. & Pope, D. H. ( 1981; ). Ecological distribution of Legionella pneumophila. Appl Environ Microbiol 41, 9–16.
    [Google Scholar]
  17. Gal-Mor, O. & Segal, G. ( 2003; ). The Legionella pneumophila GacA homolog (LetA) is involved in the regulation of icm virulence genes and is required for intracellular multiplication in Acanthamoeba castellanii. Microb Pathog 34, 187–194.[CrossRef]
    [Google Scholar]
  18. Garduńo, R. A., Garduńo, E. & Hoffman, P. S. ( 1998; ). Surface-associated Hsp60 chaperonin of Legionella pneumophila mediates invasion in a HeLa cell model. Infect Immun 66, 4602–4610.
    [Google Scholar]
  19. Harb, O. S. & Abu Kwaik, Y. ( 2000; ). Characterization of a macrophage-specific infectivity locus (milA) of Legionella pneumophila. Infect Immun 68, 368–376.[CrossRef]
    [Google Scholar]
  20. Huang, B., Heron, B. A., Gray, B. R., Eglezos, S., Bates, J. R. & Savill, J. ( 2004; ). A predominant and virulent Legionella pneumophila serogroup 1 strain detected in isolates from patients and water in Queensland, Australia, by an amplified fragment length polymorphism protocol and virulence gene-based PCR assays. J Clin Microbiol 42, 4164–4168.[CrossRef]
    [Google Scholar]
  21. Maher, W. E., Plouffe, J. F. & Para, M. F. ( 1983; ). Plasmid profiles of clinical and environmental isolates of Legionella pneumophila serogroup 1. J Clin Microbiol 18, 1422–1423.
    [Google Scholar]
  22. Nagai, H., Kagan, J. C., Zhu, X., Kahn, R. A. & Roy, C. R. ( 2002; ). A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295, 679–682.[CrossRef]
    [Google Scholar]
  23. Ridenour, D. A., Cirillo, S. L. G., Feng, S., Samrakandi, M. M. & Cirillo, J. D. ( 2003; ). Identification of a gene that affects the efficiency of host cell infection by Legionella pneumophila in a temperature-dependent fashion. Infect Immun 71, 6256–6263.[CrossRef]
    [Google Scholar]
  24. Robey, M. & Cianciotto, N. P. ( 2002; ). Legionella pneumophila feoAB promotes ferrous iron uptake and intracellular infection. Infect Immun 70, 5659–5669.[CrossRef]
    [Google Scholar]
  25. Rossier, O. & Cianciotto, N. P. ( 2001; ). Type II protein secretion is a subset of the PilD-dependent processes that facilitate intracellular infection by Legionella pneumophila. Infect Immun 69, 2092–2098.[CrossRef]
    [Google Scholar]
  26. Rossier, O., Starkenburg, S. R. & Cianciotto, N. P. ( 2004; ). Legionella pneumophila type II protein secretion promotes virulence in the A/J mouse model of Legionnaires' disease pneumonia. Infect Immun 72, 310–321.[CrossRef]
    [Google Scholar]
  27. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  28. Samrakandi, M. M., Cirillo, S. L. G., Ridenour, D. A., Bermudez, L. E. & Cirillo, J. D. ( 2002; ). Genetic and phenotypic differences between Legionella pneumophila strains. J Clin Microbiol 40, 1352–1362.[CrossRef]
    [Google Scholar]
  29. Segal, G. & Shuman, H. A. ( 1998; ). How is the intracellular fate of the Legionella pneumophila phagosome determined? Trends Microbiol 6, 253–255.[CrossRef]
    [Google Scholar]
  30. Segal, G., Purcell, M. & Shuman, H. A. ( 1998; ). Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc Natl Acad Sci U S A 95, 1669–1674.[CrossRef]
    [Google Scholar]
  31. Segal, G., Russo, J. J. & Shuman, H. A. ( 1999; ). Relationships between a new type IV secretion system and the icm/dot virulence system of Legionella pneumophila. Mol Microbiol 34, 799–809.[CrossRef]
    [Google Scholar]
  32. Shohdy, N., Efe, J. A., Emr, S. D. & Shuman, H. A. ( 2005; ). Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. Proc Natl Acad Sci U S A 102, 4866–4871.[CrossRef]
    [Google Scholar]
  33. Standards Australia ( 2000; ). Air-handling and water systems of buildingsmicrobial controlPart 3: performance-based maintenance of cooling water systems, Australian/New Zealand Standard AS/NZS 3666.3:2000. Sydney: Standards Australia.
  34. Viswanathan, V. K., Edelstein, P. H., Pope, C. D. & Cianciotto, N. P. ( 2000; ). The Legionella pneumophila iraAB locus is required for iron assimilation, intracellular infection, and virulence. Infect Immun 68, 1069–1079.[CrossRef]
    [Google Scholar]
  35. Viswanathan, V. K., Kurtz, S., Pedersen, L. L., Abu Kwaik, Y., Krcmarik, K., Mody, S. & Cianciotto, N. P. ( 2002; ). The cytochrome c maturation locus of Legionella pneumophila promotes iron assimilation and intracellular infection and contains a strain-specific insertion sequence element. Infect Immun 70, 1842–1852.[CrossRef]
    [Google Scholar]
  36. Vogel, J. P., Andrews, H. L., Wong, S. K. & Isberg, R. R. ( 1998; ). Conjugative transfer by the virulence system of Legionella pneumophila. Science 279, 873–876.[CrossRef]
    [Google Scholar]
  37. Yu, V. L., Plouffe, J. F., Pastoris, M. C. & 8 other authors ( 2002; ). Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: an international collaborative survey. J Infect Dis 186, 127–128.[CrossRef]
    [Google Scholar]
  38. Zink, S. D., Pedersen, L., Cianciotto, N. P. & Abu Kwaik, Y. ( 2002; ). The Dot/Icm type IV secretion system of Legionella pneumophila is essential for the induction of apoptosis in human macrophages. Infect Immun 70, 1657–1663.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46310-0
Loading
/content/journal/jmm/10.1099/jmm.0.46310-0
Loading

Data & Media loading...

Supplements

vol. , part 8, pp. 993 - 997

Sequences of primers used. [PDF](24 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error