1887

Abstract

This study was conducted to determine the prevalence and distribution of genotypes in Taiwan. Urine and endocervical-swab samples were collected from two hospitals located in northern and southern Taiwan. The genotypes of a total of 145 samples positive for were analysed by sequencing the gene and this was successful in 102 samples. Nine different genotypes were identified. Genotype E was the most prevalent (22 %), followed by D and Da (19 %), F (16 %), J (15 %), K (11 %), G (11 %), H (6 %) and Ba (2 %). There was a geographical difference in the prevalence of genotype H (<0·018) between northern and southern Taiwan. Sequence mutation analysis by searching against GenBank reference sequences identified 12 genetic variants from a total of 102 gene sequences.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46262-0
2006-03-01
2020-04-10
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/3/301.html?itemId=/content/journal/jmm/10.1099/jmm.0.46262-0&mimeType=html&fmt=ahah

References

  1. Anttila T., Saikku P., Koskela P. & 12 other authors; 2001; Serotypes of Chlamydia trachomatis and risk for development of cervical squamous cell carcinoma. JAMA 285:47–51 [CrossRef]
    [Google Scholar]
  2. Bandea C. I., Kubota K., Brown T. M., Kilmarx P. H., Bhullar V., Yanpaisarn S., Chaisilwattana P., Siriwasin W., Black C. M. 2001; Typing of Chlamydia trachomatis strains from urine samples by amplification and sequencing the major outer membrane protein gene ( omp1 ). Sex Transm Infect 77:419–422 [CrossRef]
    [Google Scholar]
  3. Brinkman J. A., Jones W. E., Gaffga A. M., Sanders J. A., Chaturvedi A. K., Slavinsky I. J., Clayton J. L., Dumestre J., Hagensee M. E. 2002; Detection of human papillomavirus DNA in urine specimens from human immunodeficiency virus-positive women. J Clin Microbiol 40:3155–3161 [CrossRef]
    [Google Scholar]
  4. Brunham R. C., Kimani J., Bwayo J. & 8 other authors; 1996; The epidemiology of Chlamydia trachomatis within a sexually transmitted diseases core group. J Infect Dis 173:950–956 [CrossRef]
    [Google Scholar]
  5. Cabral T., Jolly A. M., Wylie J. L. 2003; Chlamydia trachomatis omp1 genotypic diversity and concordance with sexual network data. J Infect Dis 187:279–286 [CrossRef]
    [Google Scholar]
  6. Choi T. Y., Kim D. A., Seo Y. H. 2001; Evaluation of serotyping using monoclonal antibodies and PCR-RFLP for Chlamydia trachomatis serotype identification. J Korean Med Sci 16:15–19 [CrossRef]
    [Google Scholar]
  7. Dean D., Millman K. 1997; Molecular and mutation trends analyses of omp1 alleles for serovar E of Chlamydia trachomatis . Implications for the immunopathogenesis of disease. J Clin Invest 99:475–483 [CrossRef]
    [Google Scholar]
  8. Dean D., Oudens E., Bolan G., Padian N., Schachter J. 1995; Major outer membrane protein variants of Chlamydia trachomatis are associated with severe upper genital tract infections and histopathology in San Francisco. J Infect Dis 172:1013–1022 [CrossRef]
    [Google Scholar]
  9. Dean D., Suchland R. J., Stamm W. E. 2000; Evidence for long-term cervical persistence of Chlamydia trachomatis by omp1 genotyping. J Infect Dis 182:909–916 [CrossRef]
    [Google Scholar]
  10. Eckert L. O., Suchland R. J., Hawes S. E., Stamm W. E. 2000; Quantitative Chlamydia trachomatis cultures: correlation of chlamydial inclusion-forming units with serovar, age, sex, and race. J Infect Dis 182:540–544 [CrossRef]
    [Google Scholar]
  11. Eley A., Khalili M. 1993; Mixed infections of Chlamydia trachomatis may be missed using nested PCR. Genitourin Med 69:481
    [Google Scholar]
  12. Frost E. H., Deslandes S., Gendron D., Bourgaux-Ramoisy D., Bourgaux P. 1995; Variation outside variable segments of the major outer membrane protein distinguishes trachoma from urogenital isolates of the same serovar of Chlamydia trachomatis . Genitourin Med 71:18–23
    [Google Scholar]
  13. Gaydos C. A., Theodore M., Dalesio N., Wood B. J., Quinn T. C. 2004; Comparison of three nucleic acid amplification tests for detection of Chlamydia trachomatis in urine specimens. J Clin Microbiol 42:3041–3045 [CrossRef]
    [Google Scholar]
  14. Grayston J. T., Wang S. 1975; New knowledge of chlamydiae and the diseases they cause. J Infect Dis 132:87–105 [CrossRef]
    [Google Scholar]
  15. Hsieh C. Y., You S. L., Kao C. L., Chen C. J. 1999; Reproductive and infectious risk factors for invasive cervical cancer in Taiwan. Anticancer Res 19:4495–4500
    [Google Scholar]
  16. Ikehata M., Numazaki K., Chiba S. 2000; Analysis of Chlamydia trachomatis serovars in endocervical specimens derived from pregnant Japanese women. FEMS Immunol Med Microbiol 27:35–41 [CrossRef]
    [Google Scholar]
  17. Jonsdottir K., Kristjansson M., Hjaltalin O. J., Steingrimsson O. 2003; The molecular epidemiology of genital Chlamydia trachomatis in the greater Reykjavik area, Iceland. Sex Transm Dis 30:249–256 [CrossRef]
    [Google Scholar]
  18. Jurstrand M., Falk L., Fredlund H., Lindberg M., Olcen P., Andersson S., Persson K., Albert J., Backman A. 2001; Characterization of Chlamydia trachomatis omp1 genotypes among sexually transmitted disease patients in Sweden. J Clin Microbiol 39:3915–3919 [CrossRef]
    [Google Scholar]
  19. Koskela P., Anttila T., Bjorge T. & 13 other authors; 2000; Chlamydia trachomatis infection as a risk factor for invasive cervical cancer. Int J Cancer 85:35–39 [CrossRef]
    [Google Scholar]
  20. Lee G., Park J., Kim B., Kim S. A., Yoo C. K., Seong W. K. 2006; ompA genotyping of Chlamydia trachomatis from Korean female sex workers. J Infect (in press
  21. Lister N. A., Tabrizi S. N., Fairley C. K., Garland S. 2004a; Validation of Roche COBAS Amplicor assay for detection of Chlamydia trachomatis in rectal and pharyngeal specimens by an omp1 PCR assay. J Clin Microbiol 42:239–241 [CrossRef]
    [Google Scholar]
  22. Lister N. A., Tabrizi S. N., Fairley C. K., Smith A., Janssen P. H., Garland S. 2004b; Variability of the Chlamydia trachomatis omp1 gene detected in samples from men tested in male-only saunas in Melbourne, Australia. J Clin Microbiol 42:2596–2601 [CrossRef]
    [Google Scholar]
  23. Lysén M., Osterlund A., Rubin C. J., Persson T., Persson I., Herrmann B. 2004; Characterization of ompA genotypes by sequence analysis of DNA from all detected cases of Chlamydia trachomatis infections during 1 year of contact tracing in a Swedish county. J Clin Microbiol 42:1641–1647 [CrossRef]
    [Google Scholar]
  24. Mahony J. B., Luinstra K. E., Sellors J. W., Chernesky M. A. 1993; Comparison of plasmid- and chromosome-based polymerase chain reaction assays for detecting Chlamydia trachomatis nucleic acids. J Clin Microbiol 31:1753–1758
    [Google Scholar]
  25. Marrazzo J. M., Stamm W. E. 1998; New approaches to the diagnosis, treatment, and prevention of chlamydial infection. Curr Clin Top Infect Dis 18:37–59
    [Google Scholar]
  26. Molano M., Meijer C. J., Morre S. A., Pol R., van den Brule A. J. 2004; Combination of PCR targeting the VD2 of omp1 and reverse line blot analysis for typing of urogenital Chlamydia trachomatis serovars in cervical scrape specimens. J Clin Microbiol 42:2935–2939 [CrossRef]
    [Google Scholar]
  27. Morre S. A., Ossewaarde J. M., Lan J., van Doornum G. J., Walboomers J. M., MacLaren D. M., Meijer C. J., van den Brule A. J. 1998; Serotyping and genotyping of genital Chlamydia trachomatis isolates reveal variants of serovars Ba, G, and J as confirmed by omp1 nucleotide sequence analysis. J Clin Microbiol 36:345–351
    [Google Scholar]
  28. Morre S. A., Rozendaal L., van Valkengoed I. G. & 8 other authors; 2000; Urogenital Chlamydia trachomatis serovars in men and women with a symptomatic or asymptomatic infection: an association with clinical manifestations?. J Clin Microbiol 38:2292–2296
    [Google Scholar]
  29. Ngandjio A., Clerc M., Fonkoua M. C. & 7 other authors; 2003; Screening of volunteer students in Yaounde (Cameroon, Central Africa) for Chlamydia trachomatis infection and genotyping of isolated C. trachomatis strains. J Clin Microbiol 41:4404–4407 [CrossRef]
    [Google Scholar]
  30. Ngandjio A., Clerc M., Fonkoua M. C., Thonnon J., Lunel F., Bebear C., Bianchi A., De Barbeyrac B. 2004; Restriction endonuclease patterns of the omp1 gene of reference Chlamydia trachomatis strains and characterization of isolates from Cameroonian students. J Med Microbiol 53:47–50 [CrossRef]
    [Google Scholar]
  31. Parish W. L., Laumann E. O., Cohen M. S., Pan S., Zheng H., Hoffman I., Wang T., Ng K. H. 2003; Population-based study of chlamydial infection in China: a hidden epidemic. JAMA 289:1265–1273 [CrossRef]
    [Google Scholar]
  32. Pedersen L. N., Kjaer H. O., Moller J. K., Orntoft T. F., Ostergaard L. 2000; High-resolution genotyping of Chlamydia trachomatis from recurrent urogenital infections. J Clin Microbiol 38:3068–3071
    [Google Scholar]
  33. Peterson E. M., You J. Z., Motin V., de la Maza L. M. 1999; Intranasal immunization with Chlamydia trachomatis , serovar E, protects from a subsequent vaginal challenge with the homologous serovar. Vaccine 17:2901–2907 [CrossRef]
    [Google Scholar]
  34. Schachter J., McCormack W. M., Chernesky M. A. & 7 other authors; 2003; Vaginal swabs are appropriate specimens for diagnosis of genital tract infection with Chlamydia trachomatis . J Clin Microbiol 41:3784–3789 [CrossRef]
    [Google Scholar]
  35. Singh V., Salhan S., Das B. C., Mittal A. 2003; Predominance of Chlamydia trachomatis serovars associated with urogenital infections in females in New Delhi, India. . J Clin Microbiol 41:2700–2702 [CrossRef]
    [Google Scholar]
  36. Spaargaren J., Fennema H. S., Morre S. A., de Vries H. J., Coutinho R. A. 2005; New lymphogranuloma venereum Chlamydia trachomatis variant, Amsterdam. . Emerg Infect Dis 11:1090–1092 [CrossRef]
    [Google Scholar]
  37. Stephens R. S., Sanchez-Pescador R., Wagar E. A., Inouye C., Urdea M. S. 1987; Diversity of Chlamydia trachomatis major outer membrane protein genes. J Bacteriol 169:3879–3885
    [Google Scholar]
  38. Stothard D. R., Boguslawski G., Jones R. B. 1998; Phylogenetic analysis of the Chlamydia trachomatis major outer membrane protein and examination of potential pathogenic determinants. Infect Immun 66:3618–3625
    [Google Scholar]
  39. Sturm-Ramirez K., Brumblay H., Diop K. & 7 other authors; 2000; Molecular epidemiology of genital Chlamydia trachomatis infection in high-risk women in Senegal, West Africa. J Clin Microbiol 38:138–145
    [Google Scholar]
  40. Suchland R. J., Stamm W. E. 1991; Simplified microtiter cell culture method for rapid immunotyping of Chlamydia trachomatis . J Clin Microbiol 29:1333–1338
    [Google Scholar]
  41. Vincelette J., Schirm J., Bogard M., Bourgault A. M., Luijt D. S., Bianchi A., Voorst Vader P. C., Butcher A., Rosenstraus M. 1999; Multicenter evaluation of the fully automated COBAS AMPLICOR PCR test for detection of Chlamydia trachomatis in urogenital specimens. J Clin Microbiol 37:74–80
    [Google Scholar]
  42. Wang S. P., Kuo C. C., Barnes R. C., Stephens R. S., Grayston J. T. 1985; Immunotyping of Chlamydia trachomatis with monoclonal antibodies. J Infect Dis 152:791–800 [CrossRef]
    [Google Scholar]
  43. Wiesenfeld H. C., Heine R. P., Rideout A., Macio I., DiBiasi F., Sweet R. L. 1996; The vaginal introitus: a novel site for Chlamydia trachomatis testing in women. Am J Obstet Gynecol 174:1542–1546 [CrossRef]
    [Google Scholar]
  44. Woegerbauer M., Jenni B., Thalhammer F., Graninger W., Burgmann H. 2002; Natural genetic transformation of clinical isolates of Escherichia coli in urine and water. Appl Environ Microbiol 68:440–443 [CrossRef]
    [Google Scholar]
  45. Wu C. H., Lee M. F., Yin S. C., Yang D. M., Cheng S. F. 1992; Comparison of polymerase chain reaction, monoclonal antibody based enzyme immunoassay, and cell culture for detection of Chlamydia trachomatis in genital specimens. Sex Transm Dis 19:193–197 [CrossRef]
    [Google Scholar]
  46. Yamazaki T., Hagiwara T., Kishimoto T., Sasaki N., Takahashi S., Ishihara O., Wangroongsarb P., Kusum M., Sirivongrangsan P. 2005; Distribution of Chlamydia trachomatis serovars among female prostitutes and non-prostitutes in Thailand, and non-prostitutes in Japan during the mid-90s. Jpn J Infect Dis 58:211–213
    [Google Scholar]
  47. Yuan Y., Zhang Y. X., Watkins N. G., Caldwell H. D. 1989; Nucleotide and deduced amino acid sequences for the four variable domains of the major outer membrane proteins of the 15 Chlamydia trachomatis serovars. Infect Immun 57:1040–1049
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46262-0
Loading
/content/journal/jmm/10.1099/jmm.0.46262-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error