1887

Abstract

This study was conducted to determine the prevalence and distribution of genotypes in Taiwan. Urine and endocervical-swab samples were collected from two hospitals located in northern and southern Taiwan. The genotypes of a total of 145 samples positive for were analysed by sequencing the gene and this was successful in 102 samples. Nine different genotypes were identified. Genotype E was the most prevalent (22 %), followed by D and Da (19 %), F (16 %), J (15 %), K (11 %), G (11 %), H (6 %) and Ba (2 %). There was a geographical difference in the prevalence of genotype H (<0·018) between northern and southern Taiwan. Sequence mutation analysis by searching against GenBank reference sequences identified 12 genetic variants from a total of 102 gene sequences.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46262-0
2006-03-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/3/301.html?itemId=/content/journal/jmm/10.1099/jmm.0.46262-0&mimeType=html&fmt=ahah

References

  1. Anttila, T., Saikku, P., Koskela, P. & 12 other authors ( 2001; ). Serotypes of Chlamydia trachomatis and risk for development of cervical squamous cell carcinoma. JAMA 285, 47–51.[CrossRef]
    [Google Scholar]
  2. Bandea, C. I., Kubota, K., Brown, T. M., Kilmarx, P. H., Bhullar, V., Yanpaisarn, S., Chaisilwattana, P., Siriwasin, W. & Black, C. M. ( 2001; ). Typing of Chlamydia trachomatis strains from urine samples by amplification and sequencing the major outer membrane protein gene (omp1). Sex Transm Infect 77, 419–422.[CrossRef]
    [Google Scholar]
  3. Brinkman, J. A., Jones, W. E., Gaffga, A. M., Sanders, J. A., Chaturvedi, A. K., Slavinsky, I. J., Clayton, J. L., Dumestre, J. & Hagensee, M. E. ( 2002; ). Detection of human papillomavirus DNA in urine specimens from human immunodeficiency virus-positive women. J Clin Microbiol 40, 3155–3161.[CrossRef]
    [Google Scholar]
  4. Brunham, R. C., Kimani, J., Bwayo, J. & 8 other authors ( 1996; ). The epidemiology of Chlamydia trachomatis within a sexually transmitted diseases core group. J Infect Dis 173, 950–956.[CrossRef]
    [Google Scholar]
  5. Cabral, T., Jolly, A. M. & Wylie, J. L. ( 2003; ). Chlamydia trachomatis omp1 genotypic diversity and concordance with sexual network data. J Infect Dis 187, 279–286.[CrossRef]
    [Google Scholar]
  6. Choi, T. Y., Kim, D. A. & Seo, Y. H. ( 2001; ). Evaluation of serotyping using monoclonal antibodies and PCR-RFLP for Chlamydia trachomatis serotype identification. J Korean Med Sci 16, 15–19.[CrossRef]
    [Google Scholar]
  7. Dean, D. & Millman, K. ( 1997; ). Molecular and mutation trends analyses of omp1 alleles for serovar E of Chlamydia trachomatis. Implications for the immunopathogenesis of disease. J Clin Invest 99, 475–483.[CrossRef]
    [Google Scholar]
  8. Dean, D., Oudens, E., Bolan, G., Padian, N. & Schachter, J. ( 1995; ). Major outer membrane protein variants of Chlamydia trachomatis are associated with severe upper genital tract infections and histopathology in San Francisco. J Infect Dis 172, 1013–1022.[CrossRef]
    [Google Scholar]
  9. Dean, D., Suchland, R. J. & Stamm, W. E. ( 2000; ). Evidence for long-term cervical persistence of Chlamydia trachomatis by omp1 genotyping. J Infect Dis 182, 909–916.[CrossRef]
    [Google Scholar]
  10. Eckert, L. O., Suchland, R. J., Hawes, S. E. & Stamm, W. E. ( 2000; ). Quantitative Chlamydia trachomatis cultures: correlation of chlamydial inclusion-forming units with serovar, age, sex, and race. J Infect Dis 182, 540–544.[CrossRef]
    [Google Scholar]
  11. Eley, A. & Khalili, M. ( 1993; ). Mixed infections of Chlamydia trachomatis may be missed using nested PCR. Genitourin Med 69, 481.
    [Google Scholar]
  12. Frost, E. H., Deslandes, S., Gendron, D., Bourgaux-Ramoisy, D. & Bourgaux, P. ( 1995; ). Variation outside variable segments of the major outer membrane protein distinguishes trachoma from urogenital isolates of the same serovar of Chlamydia trachomatis. Genitourin Med 71, 18–23.
    [Google Scholar]
  13. Gaydos, C. A., Theodore, M., Dalesio, N., Wood, B. J. & Quinn, T. C. ( 2004; ). Comparison of three nucleic acid amplification tests for detection of Chlamydia trachomatis in urine specimens. J Clin Microbiol 42, 3041–3045.[CrossRef]
    [Google Scholar]
  14. Grayston, J. T. & Wang, S. ( 1975; ). New knowledge of chlamydiae and the diseases they cause. J Infect Dis 132, 87–105.[CrossRef]
    [Google Scholar]
  15. Hsieh, C. Y., You, S. L., Kao, C. L. & Chen, C. J. ( 1999; ). Reproductive and infectious risk factors for invasive cervical cancer in Taiwan. Anticancer Res 19, 4495–4500.
    [Google Scholar]
  16. Ikehata, M., Numazaki, K. & Chiba, S. ( 2000; ). Analysis of Chlamydia trachomatis serovars in endocervical specimens derived from pregnant Japanese women. FEMS Immunol Med Microbiol 27, 35–41.[CrossRef]
    [Google Scholar]
  17. Jonsdottir, K., Kristjansson, M., Hjaltalin, O. J. & Steingrimsson, O. ( 2003; ). The molecular epidemiology of genital Chlamydia trachomatis in the greater Reykjavik area, Iceland. Sex Transm Dis 30, 249–256.[CrossRef]
    [Google Scholar]
  18. Jurstrand, M., Falk, L., Fredlund, H., Lindberg, M., Olcen, P., Andersson, S., Persson, K., Albert, J. & Backman, A. ( 2001; ). Characterization of Chlamydia trachomatis omp1 genotypes among sexually transmitted disease patients in Sweden. J Clin Microbiol 39, 3915–3919.[CrossRef]
    [Google Scholar]
  19. Koskela, P., Anttila, T., Bjorge, T. & 13 other authors ( 2000; ). Chlamydia trachomatis infection as a risk factor for invasive cervical cancer. Int J Cancer 85, 35–39.[CrossRef]
    [Google Scholar]
  20. Lee, G., Park, J., Kim, B., Kim, S. A., Yoo, C. K. & Seong, W. K. ( 2006; ). ompA genotyping of Chlamydia trachomatis from Korean female sex workers. J Infect (in press).
    [Google Scholar]
  21. Lister, N. A., Tabrizi, S. N., Fairley, C. K. & Garland, S. ( 2004a; ). Validation of Roche COBAS Amplicor assay for detection of Chlamydia trachomatis in rectal and pharyngeal specimens by an omp1 PCR assay. J Clin Microbiol 42, 239–241.[CrossRef]
    [Google Scholar]
  22. Lister, N. A., Tabrizi, S. N., Fairley, C. K., Smith, A., Janssen, P. H. & Garland, S. ( 2004b; ). Variability of the Chlamydia trachomatis omp1 gene detected in samples from men tested in male-only saunas in Melbourne, Australia. J Clin Microbiol 42, 2596–2601.[CrossRef]
    [Google Scholar]
  23. Lysén, M., Osterlund, A., Rubin, C. J., Persson, T., Persson, I. & Herrmann, B. ( 2004; ). Characterization of ompA genotypes by sequence analysis of DNA from all detected cases of Chlamydia trachomatis infections during 1 year of contact tracing in a Swedish county. J Clin Microbiol 42, 1641–1647.[CrossRef]
    [Google Scholar]
  24. Mahony, J. B., Luinstra, K. E., Sellors, J. W. & Chernesky, M. A. ( 1993; ). Comparison of plasmid- and chromosome-based polymerase chain reaction assays for detecting Chlamydia trachomatis nucleic acids. J Clin Microbiol 31, 1753–1758.
    [Google Scholar]
  25. Marrazzo, J. M. & Stamm, W. E. ( 1998; ). New approaches to the diagnosis, treatment, and prevention of chlamydial infection. Curr Clin Top Infect Dis 18, 37–59.
    [Google Scholar]
  26. Molano, M., Meijer, C. J., Morre, S. A., Pol, R. & van den Brule, A. J. ( 2004; ). Combination of PCR targeting the VD2 of omp1 and reverse line blot analysis for typing of urogenital Chlamydia trachomatis serovars in cervical scrape specimens. J Clin Microbiol 42, 2935–2939.[CrossRef]
    [Google Scholar]
  27. Morre, S. A., Ossewaarde, J. M., Lan, J., van Doornum, G. J., Walboomers, J. M., MacLaren, D. M., Meijer, C. J. & van den Brule, A. J. ( 1998; ). Serotyping and genotyping of genital Chlamydia trachomatis isolates reveal variants of serovars Ba, G, and J as confirmed by omp1 nucleotide sequence analysis. J Clin Microbiol 36, 345–351.
    [Google Scholar]
  28. Morre, S. A., Rozendaal, L., van Valkengoed, I. G. & 8 other authors ( 2000; ). Urogenital Chlamydia trachomatis serovars in men and women with a symptomatic or asymptomatic infection: an association with clinical manifestations? J Clin Microbiol 38, 2292–2296.
    [Google Scholar]
  29. Ngandjio, A., Clerc, M., Fonkoua, M. C. & 7 other authors ( 2003; ). Screening of volunteer students in Yaounde (Cameroon, Central Africa) for Chlamydia trachomatis infection and genotyping of isolated C. trachomatis strains. J Clin Microbiol 41, 4404–4407.[CrossRef]
    [Google Scholar]
  30. Ngandjio, A., Clerc, M., Fonkoua, M. C., Thonnon, J., Lunel, F., Bebear, C., Bianchi, A. & De Barbeyrac, B. ( 2004; ). Restriction endonuclease patterns of the omp1 gene of reference Chlamydia trachomatis strains and characterization of isolates from Cameroonian students. J Med Microbiol 53, 47–50.[CrossRef]
    [Google Scholar]
  31. Parish, W. L., Laumann, E. O., Cohen, M. S., Pan, S., Zheng, H., Hoffman, I., Wang, T. & Ng, K. H. ( 2003; ). Population-based study of chlamydial infection in China: a hidden epidemic. JAMA 289, 1265–1273.[CrossRef]
    [Google Scholar]
  32. Pedersen, L. N., Kjaer, H. O., Moller, J. K., Orntoft, T. F. & Ostergaard, L. ( 2000; ). High-resolution genotyping of Chlamydia trachomatis from recurrent urogenital infections. J Clin Microbiol 38, 3068–3071.
    [Google Scholar]
  33. Peterson, E. M., You, J. Z., Motin, V. & de la Maza, L. M. ( 1999; ). Intranasal immunization with Chlamydia trachomatis, serovar E, protects from a subsequent vaginal challenge with the homologous serovar. Vaccine 17, 2901–2907.[CrossRef]
    [Google Scholar]
  34. Schachter, J., McCormack, W. M., Chernesky, M. A. & 7 other authors ( 2003; ). Vaginal swabs are appropriate specimens for diagnosis of genital tract infection with Chlamydia trachomatis. J Clin Microbiol 41, 3784–3789.[CrossRef]
    [Google Scholar]
  35. Singh, V., Salhan, S., Das, B. C. & Mittal, A. ( 2003; ). Predominance of Chlamydia trachomatis serovars associated with urogenital infections in females in New Delhi, India. J Clin Microbiol 41, 2700–2702.[CrossRef]
    [Google Scholar]
  36. Spaargaren, J., Fennema, H. S., Morre, S. A., de Vries, H. J. & Coutinho, R. A. ( 2005; ). New lymphogranuloma venereum Chlamydia trachomatis variant, Amsterdam. Emerg Infect Dis 11, 1090–1092.[CrossRef]
    [Google Scholar]
  37. Stephens, R. S., Sanchez-Pescador, R., Wagar, E. A., Inouye, C. & Urdea, M. S. ( 1987; ). Diversity of Chlamydia trachomatis major outer membrane protein genes. J Bacteriol 169, 3879–3885.
    [Google Scholar]
  38. Stothard, D. R., Boguslawski, G. & Jones, R. B. ( 1998; ). Phylogenetic analysis of the Chlamydia trachomatis major outer membrane protein and examination of potential pathogenic determinants. Infect Immun 66, 3618–3625.
    [Google Scholar]
  39. Sturm-Ramirez, K., Brumblay, H., Diop, K. & 7 other authors ( 2000; ). Molecular epidemiology of genital Chlamydia trachomatis infection in high-risk women in Senegal, West Africa. J Clin Microbiol 38, 138–145.
    [Google Scholar]
  40. Suchland, R. J. & Stamm, W. E. ( 1991; ). Simplified microtiter cell culture method for rapid immunotyping of Chlamydia trachomatis. J Clin Microbiol 29, 1333–1338.
    [Google Scholar]
  41. Vincelette, J., Schirm, J., Bogard, M., Bourgault, A. M., Luijt, D. S., Bianchi, A., Voorst Vader, P. C., Butcher, A. & Rosenstraus, M. ( 1999; ). Multicenter evaluation of the fully automated COBAS AMPLICOR PCR test for detection of Chlamydia trachomatis in urogenital specimens. J Clin Microbiol 37, 74–80.
    [Google Scholar]
  42. Wang, S. P., Kuo, C. C., Barnes, R. C., Stephens, R. S. & Grayston, J. T. ( 1985; ). Immunotyping of Chlamydia trachomatis with monoclonal antibodies. J Infect Dis 152, 791–800.[CrossRef]
    [Google Scholar]
  43. Wiesenfeld, H. C., Heine, R. P., Rideout, A., Macio, I., DiBiasi, F. & Sweet, R. L. ( 1996; ). The vaginal introitus: a novel site for Chlamydia trachomatis testing in women. Am J Obstet Gynecol 174, 1542–1546.[CrossRef]
    [Google Scholar]
  44. Woegerbauer, M., Jenni, B., Thalhammer, F., Graninger, W. & Burgmann, H. ( 2002; ). Natural genetic transformation of clinical isolates of Escherichia coli in urine and water. Appl Environ Microbiol 68, 440–443.[CrossRef]
    [Google Scholar]
  45. Wu, C. H., Lee, M. F., Yin, S. C., Yang, D. M. & Cheng, S. F. ( 1992; ). Comparison of polymerase chain reaction, monoclonal antibody based enzyme immunoassay, and cell culture for detection of Chlamydia trachomatis in genital specimens. Sex Transm Dis 19, 193–197.[CrossRef]
    [Google Scholar]
  46. Yamazaki, T., Hagiwara, T., Kishimoto, T., Sasaki, N., Takahashi, S., Ishihara, O., Wangroongsarb, P., Kusum, M. & Sirivongrangsan, P. ( 2005; ). Distribution of Chlamydia trachomatis serovars among female prostitutes and non-prostitutes in Thailand, and non-prostitutes in Japan during the mid-90s. Jpn J Infect Dis 58, 211–213.
    [Google Scholar]
  47. Yuan, Y., Zhang, Y. X., Watkins, N. G. & Caldwell, H. D. ( 1989; ). Nucleotide and deduced amino acid sequences for the four variable domains of the major outer membrane proteins of the 15 Chlamydia trachomatis serovars. Infect Immun 57, 1040–1049.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46262-0
Loading
/content/journal/jmm/10.1099/jmm.0.46262-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error