1887

Abstract

Isolates (79 in total) of obtained over a 2 year period from 785 patients suspected of having -associated diarrhoea (CDAD) and being hospitalized in the University Hospital in Warsaw were characterized by toxigenicity profile and PCR ribotyping. Furthermore, their susceptibility to clindamycin and erythromycin was determined. Among the 79 isolates, 35 were classified as AB, 1 as ABCDT, 36 as AB and 7 as AB. A total of 21 different PCR ribotypes was detected. Two main AB strains circulated in our hospital: ribotype 014 and ribotype 046. Unexpectedly, the predominant PCR ribotype was type 017, a known AB strain, and this accounted for about 45·5 % of all isolates cultured from patients with CDAD. Isolates belonging to PCR ribotype 017 were found in cases from epidemics of antibiotic-associated diarrhoea in the internal and surgery units. High-level resistance (MIC⩾256 mg l) to clindamycin and erythromycin was found in 39 (49 %) of the isolates. Interestingly, 34 (94 %) of macrolide-lincosamide-streptogramin B (MLS) type resistance strains did not produce toxin A, but produced toxin B and were AB ribotype 017. Thirty-seven of the high-level resistance strains harboured the erythromycin-resistance methylase gene (). isolates (2/29) that had high-level clindamycin and erythromycin resistance, and belonged to PCR ribotype 046, were negative. These investigations revealed that the predominant strain isolated from symptomatic patients hospitalized in University Hospital in Warsaw was MLS-positive clindamycin/erythromycin-resistant PCR ribotype 017.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46213-0
2006-02-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/2/207.html?itemId=/content/journal/jmm/10.1099/jmm.0.46213-0&mimeType=html&fmt=ahah

References

  1. Ackermann, G., Degner, A., Cohen, S. H., Silva, J., Jr & Rodloff, A. C. ( 2003; ). Prevalence and association of macrolide-lincosamide-streptogramin B (MLSB) resistance with resistance to moxifloxacin in Clostridium difficile. J Antimicrob Chemother 51, 599–603.[CrossRef]
    [Google Scholar]
  2. Alfa, M. J., Kabani, A., Lyerly, D. & 7 other authors ( 2000; ). Characterization of a toxin A-negative, toxin-B positive strain of Clostridium difficile responsible for a nosocomial outbreak of Clostridium difficile-associated diarrhea. J Clin Microbiol 38, 2706–2714.
    [Google Scholar]
  3. Barbut, F., Lalande, V., Burghoffer, B., Thien, H. V., Grimprel, E. & Petit, J. C. ( 2002; ). Prevalence and genetic characterization of toxin A variant strains of Clostridium difficile among adults and children with diarrhea in France. J Clin Microbiol 40, 2079–2083.[CrossRef]
    [Google Scholar]
  4. Borriello, S. P. ( 1998; ). Pathogenesis of Clostridium difficile infection. J Antimicrob Chemother 41, suppl. C, 13–19.
    [Google Scholar]
  5. Brazier, J. S., Stubbs, S. L. & Duerden, B. I. ( 1999; ). Prevalence of toxin A negative/B positive Clostridium difficile strains. J Hosp Infect 42, 248–249.
    [Google Scholar]
  6. Delmee, M. & Avesani, V. ( 1988; ). Correlation between serogroup and susceptibility to chloramphenicol, clindamycin, erythromycin, rifampicin, and tetracycline among 308 isolates of Clostridium difficile. J Antimicrob Chemother 22, 325–331.[CrossRef]
    [Google Scholar]
  7. Farrow, K. A., Lyras, D. & Rodd, J. I. ( 2000; ). The macrolide-lincosamide-streptogramin B resistance determinant from Clostridium difficile 630 contains two erm (B) genes. Antimicrob Agents Chemother 44, 411–413.[CrossRef]
    [Google Scholar]
  8. Farrow, K. A., Lyras, D. & Rodd, J. I. ( 2001; ). Genomic analysis of the erythromycin resistance element Tn5398 from Clostridium difficile. Microbiology 147, 2717–2728.
    [Google Scholar]
  9. Gerding, D. N. & Johnson, S. ( 2001; ). Clindamycin-resistant Clostridium difficile. In Emerging Infections 5, pp. 111–120. Edited by W. M. Scheld, W. A Craig & J. M. Hughes. Washington, DC: American Society for Microbiology.
  10. Johnson, S., Samore, M. H., Farrow, K. A. & 9 other authors ( 1999; ). Epidemics of diarrhea caused by a clindamycin resistant strain of Clostridium difficile in four hospitals. N Engl J Med 341, 1645–1651.[CrossRef]
    [Google Scholar]
  11. Johnson, S., Sambol, S. P., Brazier, J. S., Delmee, M., Avesani, V., Merrigan, M. M. & Gerding, D. N. ( 2003; ). International typing study of toxin A-negative, toxin B-positive Clostridium difficile variants. J Clin Microbiol 4, 1543–1547.
    [Google Scholar]
  12. Kato, H., Kato, N., Katow, S., Muegawa, T., Nakamura, S. & Lyerly, D. ( 1999; ). Deletions in the repeating sequences of the toxin A gene of toxin A-negative, toxin B-positive Clostridium difficile strains. FEMS Microbiol Lett 175, 197–203.[CrossRef]
    [Google Scholar]
  13. Kuijper, E. J., de Weerdt, J., Kato, H., Kato, N., van Dam, A. P., van der Vorm, E. R., Weel, J., van Rheenen, C. & Dankert, J. ( 2001; ). Nosocomial outbreak of Clostridium difficile-associated diarrhoea due to a clindamycin-resistant enterotoxin A-negative strain. Eur J Clin Microbiol Infect Dis 20, 528–534.[CrossRef]
    [Google Scholar]
  14. Mullany, P., Wilks, M. & Tabaqchali, S. ( 1995; ). Transfer of macrolide-lincosamide-streptogramin B (MLS) resistance in Clostridium difficile is linked to a gene homologous with toxin A and is mediated by a conjugative transposon, Tn5398. J Antimicrob Chemother 35, 305–315.[CrossRef]
    [Google Scholar]
  15. O'Neill, G. L., Ogunsola, F. T., Brazier, J. S. & Duerden, B. I. ( 1996; ). Modification of a PCR ribotyping method for application as a routine typing scheme for Clostridium difficile. Anaerobe 2, 205–209.[CrossRef]
    [Google Scholar]
  16. Pituch, H., Obuch-Woszczatyński, P., van Belkum, A., Meisel-Mikołajczyk, F. & Łuczak, M. ( 2001; ). Clindamycin resistant toxin A negative/toxin B positive Clostridium difficile strains isolated from patients with antibiotic-associated-diarrhoea. Int J Antimicrob Agents 17, S163.
    [Google Scholar]
  17. Pituch, H., van den Braak, N., van Leeuven, W., van Belkum, A., Martirosian, G., Obuch-Woszczatyński, P., Łuczak, M. & Meisel-Mikołajczyk, F. ( 2001; ). Clonal dissemination of a toxin-A-negative/toxin-B-positive Clostridium difficile strain from patients with antibiotic-associated diarrhea in Poland. Clin Microbiol Infect 7, 442–446.[CrossRef]
    [Google Scholar]
  18. Pituch, H., van Belkum, A., van den Braak, N., Obuch-Woszczatyński, P., Verbrugh, H., Meisel-Mikołajczyk, F. & Łuczak, M. ( 2003; ). Recent emergence of an epidemic clindamycin-resistance clone of Clostridium difficile among Polish patients with C. difficile-associated diarrhea. J Clin Microbiol 41, 4184–4187.[CrossRef]
    [Google Scholar]
  19. Pituch, H., Kreft, D., Obuch-Woszczatyński, P., Wultańska, D., Meisel-Mikołajczyk, F., Łuczak, M. & van Belkum, A. ( 2005; ). Clonal spread of a Clostridium difficile strain with a complete set of toxin A, toxin B, and binary toxin genes among Polish patients with Clostridium difficile-associated diarrhea. J Clin Microbiol 43, 472–475.[CrossRef]
    [Google Scholar]
  20. Rotimi, V. O., Jamal, W. Y., Mokaddas, E. M., Brazier, J. S., Johny, M. & Duerden, B. I. ( 2003; ). Prevalent PCR ribotypes of clinical and environmental strains of Clostridium difficile isolated from intensive-therapy unit patients in Kuwait. J Med Microbiol 52, 705–709.[CrossRef]
    [Google Scholar]
  21. Seppala, H., Skurnik, M., Soini, H., Roberts, M. C. & Huovinen, P. ( 1998; ). A novel erythromycin resistance methylase gene (ermTR) in Streptococcus pyogenes. Antimicrob Agents Chemother 42, 257–262.[CrossRef]
    [Google Scholar]
  22. Spigaglia, P. & Mastrantonio, P. ( 2004; ). Comparative analysis of Clostridium difficile clinical isolates belonging to different genetic lineages and time periods. J Med Microbiol 53, 1129–1136.[CrossRef]
    [Google Scholar]
  23. Stubbs, S. L., Brazier, J. S., O'Neill, G. L. & Duerden, B. I. ( 1999; ). PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol 37, 461–463.
    [Google Scholar]
  24. Urban, E., Brazier, J. S., Soki, J., Nagy, E. & Duerden, B. I. ( 2001; ). PCR ribotyping of clinical important Clostridium difficile strains from Hungary. J Med Microbiol 50, 1082–1086.
    [Google Scholar]
  25. Van den Berg, R. J., Claas, E. C. J., Oyib, D. H., Klaassen, C. H. W., Dijkshoorn, L., Brazier, J. S. & Kuijper, E. J. ( 2004; ). Characterization of toxin A-negative, toxin B-positive Clostridium difficile isolates from outbreaks in different countries by amplified fragment length polymorphism and PCR ribotyping. J Clin Microbiol 42, 1035–1041.[CrossRef]
    [Google Scholar]
  26. Weisblum, B. ( 1995; ). Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 39, 577–585.[CrossRef]
    [Google Scholar]
  27. Wust, J. & Hardegger, U. ( 1983; ). Transferable resistance to clindamycin, erythromycin, and tetracycline in Clostridium difficile. Antimicrob Agents Chemother 23, 784–786.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46213-0
Loading
/content/journal/jmm/10.1099/jmm.0.46213-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error