1887

Abstract

Differentiation of into subsp. (Cff) and subsp. (Cfv) is important for both clinical and economic reasons. In the past, several molecular typing methods have been used for differentiation, including amplified fragment length polymorphism (AFLP). In this study, AFLP was employed to identify subspecies specific markers that can serve as a basis for design of novel PCR primer sets for Cfv. Four groups of strains with different phenotypic or genotypic traits were examined by AFLP using 22 different I/I primer combinations. Specific AFLP fragments were deduced and sequenced resulting in 41 sequences. Based on the obtained sequences, five potential subspecies-specific PCR assays were developed. Extensive evaluation of the five selected PCRs with a set of 65 diverse strains identified primer set Cf C05 as subspecies Cfv-specific. This newly developed PCR is fully consistent with the AFLP subspecies differentiation results. The data indicate AFLP as a powerful tool for comparing closely related genomes and for exploiting this information to develop a specific PCR with extensive typing potential.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46186-0
2005-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/54/12/JM541215.html?itemId=/content/journal/jmm/10.1099/jmm.0.46186-0&mimeType=html&fmt=ahah

References

  1. Anonymous. 2000 Terrestrial Animal Health Code http://www.oie.int Edited by the Office International des Epizooties Paris: Office International des Epizooties;
    [Google Scholar]
  2. Chang W., Ogg J. E. 1971; Transduction and mutation to glycine tolerance in Vibrio fetus . Am J Vet Res 32:649–653
    [Google Scholar]
  3. Duim B., Vandamme P. A., Rigter A., Laevens S., Dijkstra J. R., Wagenaar J. A. 2001; Differentiation of Campylobacter species by AFLP fingerprinting. Microbiology 147:2729–2737
    [Google Scholar]
  4. Engberg J., On S. L., Harrington C. S., Gerner-Smidt P. 2000; Prevalence of Campylobacter , Arcobacter , Helicobacter , and Sutterella spp.in human fecal samples as estimated by a reevaluation of isolation methods for Campylobacters. J Clin Microbiol 38:286–291
    [Google Scholar]
  5. Florent A. 1959; Les deux vibriosis génitales: la vibriose due à V.fetus venerealis et la vibriose d'origine intestinale due à V. fetus intestinalis . Meded Veeartsschool Gent 3:1–60
    [Google Scholar]
  6. Garcia M. M., Eaglesome M. D., Rigby C. 1983; Campylobacters important in veterinary medicine. Vet Bull 53:793–818
    [Google Scholar]
  7. Harvey S., Greenwood J. R. 1983; Relationships among catalase-positive Campylobacters determined by deoxyribonucleic acid- deoxyribonucleic acid hybridization. Int J Syst Bacteriol 33:275–284 [CrossRef]
    [Google Scholar]
  8. Hum S., Quinn K., Brunner J., On S. L. W. 1997; Evaluation of a PCR assay for identification and differentiation of Campylobacter fetus subspecies. Aust Vet J 75:827–831 [CrossRef]
    [Google Scholar]
  9. Misawa N., Allos B. M., Blaser M. J. 1998; Differentiation of Campylobacter jejuni serotype O19 strains from non-O19 strains by PCR. J Clin Microbiol 36:3567–3573
    [Google Scholar]
  10. On S. L. W. 1996; Identification methods for Campylobacters , Helicobacters and related organisms. Clin Microbiol Rev 9:405–422
    [Google Scholar]
  11. On S. L. W., Harrington C. S. 2001; Evaluation of numerical analysis of PFGE-DNA profiles for differentiating Campylobacter fetus subspecies by comparison with phenotypic, PCR and 16S rDNA sequencing methods. J Appl Microbiol 90:285–293 [CrossRef]
    [Google Scholar]
  12. Reijans M., Lascaris R., Oude Groeneger A. & 9 other authors; 2003; Quantitative comparison of cDNA-AFLP, microarrays and GeneChip expression data in Saccharomyces cerevisiae . Genomics 82:606–618 [CrossRef]
    [Google Scholar]
  13. Rombauts S., Van de Peer Y., Rouzé P. 2003; AFLPinSilico, simulating AFLP fingerprints. Bioinformatics 19:776–777 [CrossRef]
    [Google Scholar]
  14. Roop R. M. II, Smibert R. M., Johnson J. L., Krieg N. R. 1984; Differential characteristics of catalase-positive Campylobacters correlated with DNA homology groups. Can J Microbiol 30:938–951 [CrossRef]
    [Google Scholar]
  15. Schober C., Gorkiewicz G., Zechner R. 2001; Identification of differential DNA fragments associated with the pathogenicity of Campylobacter fetus species by subtractive hybridization. Int J Med Microbiol 291 (Suppl. 13):122–123
    [Google Scholar]
  16. Vandamme P. 2000; Taxonomy of the family Campylobacteraceae . In Campylobacter pp 3–26 Edited by Nachamkin I, Blaser M. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Van den Braak N., Simons G., Gorkink R. & 7 other authors; 2004; A new high-throughput AFLP approach for identification of new genetic polymorphism in the genome of the clonal microorganism Mycobacterium tuberculosis . J Microbiol Methods 56:49–62 [CrossRef]
    [Google Scholar]
  18. Véron M., Chatelain R. 1973; Taxonomic study of the genus Campylobacter Sebald and Véron and designation of the neotype strain for the type species, Campylobacter fetus (Smith and Taylor) Sebald and Véron. Int J Syst Bacteriol 23:122–134 [CrossRef]
    [Google Scholar]
  19. Vos P., Hogers R., Bleeker M. & 8 other authors; 1995; AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414 [CrossRef]
    [Google Scholar]
  20. Wagenaar J. A., Van Bergen M. A. P. 2004; Bovine genital campylobacteriosis. In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals . pp 439–450 Edited by the Office International des Epizooties Paris: Office International des Epizooties;
    [Google Scholar]
  21. Wagenaar J. A., Van Bergen M. A. P., Newell D. G., Grogono-Thomas R., Duim B. 2001; Comparative study using amplified fragment length polymorphism fingerprinting, PCR genotyping, and phenotyping to differentiate Campylobacter fetus strains isolated from animals. J Clin Microbiol 39:2283–2286 [CrossRef]
    [Google Scholar]
  22. Wang G., Clark C. G., Taylor T. M., Pucknell C., Barton C., Price L., Woodward D. L., Rodgers F. G. 2002; Colony multiplex PCR assay for identification and differentiation of Campylobacter jejuni ,C.coli , C. lari , C. upsaliensis and C.fetus subsp. fetus . J Clin Microbiol 40:4744–4747 [CrossRef]
    [Google Scholar]
  23. Wesley I. V., Wesley R. D., Cardella M., Dewhirst F. E., Paster B. J. 1991; Oligodeoxynucleotide probes for Campylobacter fetus and Campylobacter hyointestinalis based on 16S rRNA sequences. J Clin Microbiol 29:1812–1817
    [Google Scholar]
  24. Winstanley C. 2002; Spot the difference: applications of subtractive hybridisation to the study of bacterial pathogens. J Med Microbiol 51:459–467
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46186-0
Loading
/content/journal/jmm/10.1099/jmm.0.46186-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error