1887

Abstract

This study aimed firstly to establish the distribution and copy number within the complex of three insertion sequences (IS, IS and IS) that possess the ability to activate transcription and hence influence gene expression. A second aim was to map the genomic insertion sites of one of the active insertion sequences (IS) to establish putative links between insertion site and downstream gene activation. The resulting data revealed that all three insertion sequences were present in one-third of the 66 isolates tested. The three insertion sequences were prevalent across the nine complex species, although IS was absent from the 16 strains tested and IS was absent from all 10 strains. IS copies from six strains (two strains and one strain each of , , and ) were mapped to the genome using hemi-nested inverse PCR. Insertions were found upstream of genes with wide-ranging functions. This study suggests that the abundance and distribution of these active insertion sequences is likely to affect genomic plasticity, and potentially gene transcription and pathogenicity.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46175-0
2006-01-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/1/1.html?itemId=/content/journal/jmm/10.1099/jmm.0.46175-0&mimeType=html&fmt=ahah

References

  1. Berriatua, E., Ziluaga, I., Miguel-Virto, C., Uribarren, P., Juste, R., Laevens, S., Vandamme, P. & Govan, J. R. ( 2001; ). Outbreak of subclinical mastitis in a flock of dairy sheep associated with Burkholderia cepacia complex infection. J Clin Microbiol 39, 990–994.[CrossRef]
    [Google Scholar]
  2. Bjourson, A. J. & Cooper, J. E. ( 1992; ). Band stab PCR: a simple technique for the purification of individual PCR products. Nucleic Acids Res 20, 4675.[CrossRef]
    [Google Scholar]
  3. Burkholder, W. H. ( 1950; ). Sour skin, a bacterial rot of onion bulbs. Phytopathology 40, 115–117.
    [Google Scholar]
  4. Butler, S. L., Doherty, C. J., Hughes, J. E., Nelson, J. W. & Govan, J. R. W. ( 1995; ). Burkholderia cepacia and cystic fibrosis: do natural environments present a potential hazard? J Clin Microbiol 33, 1001–1004.
    [Google Scholar]
  5. Coenye, T. & Vandamme, P. ( 2003; ). Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5, 719–729.[CrossRef]
    [Google Scholar]
  6. Coenye, T., Vandamme, P., Govan, J. R. & LiPuma, J. J. ( 2001; ). Taxonomy and identification of the Burkholderia cepacia complex. J Clin Microbiol 39, 3427–3436.[CrossRef]
    [Google Scholar]
  7. Coenye, T., Vandamme, P., LiPuma, J. J., Govan, J. R. & Mahenthiralingam, E. ( 2003; ). Updated version of the Burkholderia cepacia complex experimental strain panel. J Clin Microbiol 41, 2797–2798.[CrossRef]
    [Google Scholar]
  8. Fang, Z. & Forbes, K. J. ( 1997; ). A Mycobacterium tuberculosis IS6110 preferential locus (ipl) for insertion into the genome. J Clin Microbiol 35, 479–481.
    [Google Scholar]
  9. Govan, J. R., Brown, P. H., Maddison, J., Doherty, C. J., Nelson, J. W., Dodd, M., Greening, A. P. & Webb, A. K. ( 1993; ). Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet 342, 15–19.[CrossRef]
    [Google Scholar]
  10. Govan, J. R. W., Hughes, J. E. & Vandamme, P. ( 1996; ). Burkholderia cepacia: medical, taxonomic and ecological issues. J Med Microbiol 45, 395–407.[CrossRef]
    [Google Scholar]
  11. Hasebe, A., Tsushima, S. & Lida, S. ( 1998; ). Isolation and characterisation of IS1416 from Pseudomonas glumae, a new member of the IS3 family. Plasmid 39, 196–204.[CrossRef]
    [Google Scholar]
  12. Holden, M. T. G., Titball, R. W., Peacock, S. J. & 45 other authors ( 2004; ). Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci U S A 101, 14240–14245.[CrossRef]
    [Google Scholar]
  13. Hubner, A. & Hendrickson, W. ( 1997; ). A fusion promoter created by a new insertion sequence, IS1490, activates transcription of 2,4,5-trichlorophenoxyacetic acid catabolic genes in Burkholderia cepacia AC1100. J Bacteriol 179, 2717–2723.
    [Google Scholar]
  14. Kenna, D. T., Barcus, V. A., Langley, R. J., Vandamme, P. & Govan, J. R. ( 2003; ). Lack of correlation between O-serotype, bacteriophage susceptibility and genomovar status in the Burkholderia cepacia complex. FEMS Immunol Med Microbiol 35, 87–92.[CrossRef]
    [Google Scholar]
  15. Langley, R., Kenna, D. T., Vandamme, P., Ure, R. & Govan, J. R. ( 2003; ). Lysogeny and bacteriophage host range within the Burkholderia cepacia complex. J Med Microbiol 52, 483–490.[CrossRef]
    [Google Scholar]
  16. Lessie, T. G., Hendrickson, W., Manning, B. & Devereux, R. ( 1996; ). Genomic complexity and plasticity of Burkholderia cepacia. FEMS Microbiol Lett 144, 117–128.[CrossRef]
    [Google Scholar]
  17. LiPuma, J. J., Spilker, T., Gill, L. H., Campbell, P. W., III, Liu, L. & Mahenthiralingam, E. ( 2001; ). Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am J Respir Crit Care Med 164, 92–96.[CrossRef]
    [Google Scholar]
  18. Liu, L., Spilker, T., Coenye, T. & LiPuma, J. J. ( 2003; ). Identification by subtractive hybridisation of a novel insertion element specific for two widespread Burkholderia cepacia genomovar III strains. J Clin Microbiol 41, 2471–2476.[CrossRef]
    [Google Scholar]
  19. Mack, K. & Titball, R. W. ( 1998; ). The detection of insertion sequences within the human pathogen Burkholderia pseudomallei which have been identified previously in Burkholderia cepacia. FEMS Microbiol Lett 162, 69–74.[CrossRef]
    [Google Scholar]
  20. Mahenthiralingam, E., Coenye, T., Chung, J. W., Speert, D. P., Govan, J. R., Taylor, P. & Vandamme, P. ( 2000; ). Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol 38, 910–913.
    [Google Scholar]
  21. Mahenthiralingam, E., Urban, T. A. & Goldberg, J. B. ( 2005; ). The multifarious, multireplicon Burkholderia cepacia complex. Nature Rev Microbiol 3, 144–156.[CrossRef]
    [Google Scholar]
  22. Mahillon, J. & Chandler, M. ( 1998; ). Insertion sequences. Microbiol Mol Biol Rev 62, 725–774.
    [Google Scholar]
  23. Miché, L., Faure, D., Blot, M., Cabanne-Giuli, E. & Balandreau, J. ( 2001; ). Detection and activity of insertion sequences in environmental strains of Burkholderia. Environ Microbiol 3, 766–773.[CrossRef]
    [Google Scholar]
  24. Nasser, R. M., Rahi, A. C., Haddad, M. F., Daoud, Z., Irani-Hakami, N. & Almawi, W. Y. ( 2004; ). Outbreak of Burkholderia cepacia bacteremia traced to contaminated hospital water used for dilution of an alcohol skin antiseptic. Infect Control Hosp Epidemiol 25, 231–239.[CrossRef]
    [Google Scholar]
  25. Nierman, W. C., DeShazer, D., Kim, H. S. & 30 other authors ( 2004; ). Structural flexibility in the Burkholderia mallei genome. Proc Natl Acad Sci U S A 101, 14246–14251.[CrossRef]
    [Google Scholar]
  26. Nzula, S., Vandamme, P. & Govan, J. R. ( 2002; ). Influence of taxonomic status on the in vitro antimicrobial susceptibility of the Burkholderia cepacia complex. J Antimicrob Chemother 50, 265–269.[CrossRef]
    [Google Scholar]
  27. Ortega, X., Hunt, T. A., Loutet, S., Vinion-Dubiel, A. D., Datta, A., Choudhury, B., Goldberg, J. B., Carlson, R. & Valvano, M. ( 2005; ). Reconstitution of O-specific lipopolysaccharide expression in Burkholderia cenocepacia strain J2315, which is associated with transmissible infections in patients with cystic fibrosis. J Bacteriol 187, 1324–1333.[CrossRef]
    [Google Scholar]
  28. Reynolds, A. E., Felton, J. & Wright, A. ( 1981; ). Insertion of DNA activates the cryptic bgl operon in E. coli K12. Nature 293, 625–629.[CrossRef]
    [Google Scholar]
  29. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  30. Scordilis, G. E., Ree, H. & Lessie, T. G. ( 1987; ). Identification of transposable elements which activate gene expression in Pseudomonas cepacia. J Bacteriol 169, 8–13.
    [Google Scholar]
  31. Sirinavin, S., Techasaensiri, C., Pakakasama, S., Vorachit, M., Pornkul, R. & Wacharasin, R. ( 2004; ). Hemophagocytic syndrome and Burkholderia cepacia splenic microabscesses in a child with chronic granulomatous disease. Pediatr Infect Dis J 23, 882–884.[CrossRef]
    [Google Scholar]
  32. Summer, E. J., Gonzalez, C. F., Carlisle, T., Mebane, L. M., Cass, A. M., Savva, C. G., LiPuma, J. & Young, R. ( 2004; ). Burkholderia cenocepacia phage BcepMu and a family of Mu-like phages encoding potential pathogenesis factors. J Mol Biol 340, 49–65.[CrossRef]
    [Google Scholar]
  33. Tyler, S. D., Rozee, K. R. & Johnson, W. M. ( 1996; ). Identification of IS1356, a new insertion sequence, and its association with IS402 in epidemic strains of Burkholderia cepacia infecting cystic fibrosis patients. J Clin Microbiol 34, 1610–1616.
    [Google Scholar]
  34. Winstanley, C., Detsika, M. G., Glendenning, K. J., Parsons, Y. N. & Hart, C. A. ( 2001; ). Flagellin gene PCR-RFLP analysis of a panel of strains from the Burkholderia cepacia complex. J Med Microbiol 50, 728–731.
    [Google Scholar]
  35. Wood, M. S., Byrne, A. & Lessie, T. G. ( 1991; ). IS406 and IS407, two gene-activating insertion sequences for Pseudomonas cepacia. Gene 105, 101–105.[CrossRef]
    [Google Scholar]
  36. Yesilkaya, H., Thomson, A., Doig, C., Watt, B., Dale, J. W. & Forbes, K. J. ( 2003; ). Locating transposable element polymorphisms in bacterial genomes. J Microbiol Methods 53, 355–363.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46175-0
Loading
/content/journal/jmm/10.1099/jmm.0.46175-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error