1887

Abstract

CagA modifies the signalling of host cells and causes gastric diseases. Although CagA is injected into gastric epithelial cells through the type IV secretion machinery, it remains unclear how CagA is transported towards the machinery in the bacterial cytoplasm. In this study, it was determined that the proton-dependent intracytoplasmic transport system correlates with the priming of CagA secretion from . The cytotoxicity of neutral-pH- and acidic-pH-treated was examined in the AGS cell line. The amount of phosphorylated CagA in AGS cells incubated with acidic-pH- and neutral-pH-treated was determined by enzyme immunoassay and Western blot. The production of CagA and adherence of the treated bacteria were examined by enzyme immunoassay and light microscopy, respectively. To clarify how CagA is transported towards the inner membrane of the treated bacteria, the localization of CagA was analysed by immunoelectron microscopy. The proportion of hummingbird cells in the AGS cell line rapidly increased following the inoculation of acidic-pH-treated but increased more slowly with neutral-pH-treated , and the phenomenon correlated with the amount of phosphorylated CagA in AGS cells. CagA was densely localized near the inner membrane in the acidic-pH-treated bacterial cytoplasm, but this localization was not observed in the neutral-pH-treated bacterial cytoplasm, suggesting that CagA shifts from the centre to the peripheral portion of the cytoplasm as a result of an extracellular decrease in pH. This phenomenon depended on the presence of UreI, a proton-dependent urea channel, but not on the presence of urea. The pH treatments did not enhance CagA production or the adherence of the bacterium to AGS cells. The authors propose that possesses a proton-dependent intracytoplasmic transport system that probably accelerates priming for CagA injection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46158-0
2005-12-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/54/12/JM541201.html?itemId=/content/journal/jmm/10.1099/jmm.0.46158-0&mimeType=html&fmt=ahah

References

  1. Akopyants, N. S., Clifton, S. W., Kersulyte, D. & 7 other authors ( 1998;). Analyses of the cag pathogenicity island of Helicobacter pylori. Mol Microbiol 28, 37–53.
    [Google Scholar]
  2. Ang, S., Lee, C. Z., Peck, K., Sindici, M., Matrubutham, U., Gleeson, M. A. & Wang, J. T. ( 2001;). Acid-induced gene expression in Helicobacter pylori: study in genomic scale by microarray. Infect Immun 69, 1679–1686.[CrossRef]
    [Google Scholar]
  3. Asahi, M., Azuma, T., Ito, S. & 9 other authors ( 2000;). Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. J Exp Med 191, 593–602.[CrossRef]
    [Google Scholar]
  4. Backert, S., Ziska, E., Brinkmann, V., Zimny-Arndt, U., Fauconnier, A., Jungblut, P. R., Naumann, M. & Meyer, T. F. ( 2000;). Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell Microbiol 2, 155–164.[CrossRef]
    [Google Scholar]
  5. Backert, S., Moese, S., Selbach, M., Brinkmann, V. & Meyer, T. F. ( 2001;). Phosphorylation of tyrosine 972 of the Helicobacter pylori CagA protein is essential for induction of a scattering phenotype in gastric epithelial cells. Mol Microbiol 42, 631–644.
    [Google Scholar]
  6. Blaser, M., Perez-Perez, J. G. I., Kleanthous, H., Cover, T. L., Peek, R. M., Chyou, P. H., Stemmermann, G. N. & Nomura, A. ( 1995;). Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res 55, 2111–2115.
    [Google Scholar]
  7. Censini, S., Lange, C., Xiang, Z., Crabtree, J. E., Ghiara, P., Borodovsky, M., Rappuoli, R. & Covacci, A. ( 1996;). cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A 93, 14648–14655.[CrossRef]
    [Google Scholar]
  8. Covacci, A., Telford, J. L., Giudice, G. D., Parsonnet, J. & Rappuoli, R. ( 1999;). Helicobacter pylori virulence and genetic geography. Science 284, 1328–1333.[CrossRef]
    [Google Scholar]
  9. Errington, J. ( 2003;). The bacterial actin cytoskeleton. ASM News 69, 608–614.
    [Google Scholar]
  10. Gardy, J. L., Spencer, C., Wang, K. & 8 other authors ( 2003;). psort-b: improving protein subcellular localization prediction for Gram- negative bacteria. Nucleic Acids Res 31, 3613–3617.[CrossRef]
    [Google Scholar]
  11. Gschwantler, M., Dragosics, B., Wurzer, H., Brandstatter, G. & Weiss, W. ( 1998;). Eradication of Helicobacter pylori by a 1-week course of famotidine, amoxicillin and clarithromycin. Eur J Gastroenterol Hepatol 10, 579–582.[CrossRef]
    [Google Scholar]
  12. Guruge, J. L., Falk, P. G., Lorenz, R. G., Dans, M., Wirth, H. P., Blaser, M. J., Berg, D. E. & Gordon, J. I. ( 1998;). Epithelial attachment alters the outcome of Helicobacter pylori infection. Proc Natl Acad Sci U S A 195, 3925–3930.
    [Google Scholar]
  13. Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M. & Hatakeyama, M. ( 2002;). SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683–686.[CrossRef]
    [Google Scholar]
  14. Hong, W., Morimatsu, S., Goto, T. & 8 other authors ( 2000;). Contrast-enhanced immunoelectron microscopy for Helicobacter pylori. J Microbiol Methods 42, 121–127.[CrossRef]
    [Google Scholar]
  15. Hong, W., Sano, K., Morimatsu, S. & 7 other authors ( 2003;). Medium pH-dependent redistribution of the urease of Helicobacter pylori. J Med Microbiol 52, 211–216.[CrossRef]
    [Google Scholar]
  16. Karita, M., Tummuru, M. K., Wirth, H. P. & Blaser, M. J. ( 1996;). Effect of growth phase and acid shock on Helicobacter pylori cagA expression. Infect Immun 64, 4501–4507.
    [Google Scholar]
  17. Keates, S., Keates, A. C., Warny, M., Peek, R. M., Murray, J. P. G. & Kelly, C. P. ( 1999;). Differential activation of mitogen-activated protein kinases in AGS gastric epithelial cells by cag+ and cag- Helicobacter pylori. J Immunol 163, 5552–5559.
    [Google Scholar]
  18. Lamers, C. B. ( 1996;). The changing role of H2-receptor antagonists in acid-related diseases. Eur J Gastroenterol Hepatol 8, S3–S7.[CrossRef]
    [Google Scholar]
  19. Merrell, D. S., Goodrich, M. L., Otto, G., Tompkins, L. S. & Falkow, S. ( 2003;). pH-regulated gene expression of the gastric pathogen Helicobacter pylori. Infect Immun 71, 3529–3539.[CrossRef]
    [Google Scholar]
  20. Parsonnet, J., Friedman, G. D., Orentreich, N. & Vogelman, H. ( 1997;). Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut 40, 297–301.[CrossRef]
    [Google Scholar]
  21. Peng, H., Ranaldi, R., Diss, T. C., Isaacson, P. G., Bearzi, I. & Pan, L. ( 1998;). High frequency of CagA+ Helicobacter pylori infection in high-grade gastric MALT B-cell lymphomas. J Pathol 185, 409–412.[CrossRef]
    [Google Scholar]
  22. Perrière, G. & Thioulouse, J. ( 2003;). Use of correspondence discriminant analysis to predict the subcellular location of bacterial proteins. Comput Methods Programs Biomed 70, 99–105.[CrossRef]
    [Google Scholar]
  23. Segal, E. D., Cha, J., Lo, J., Falkow, S. & Tompkins, L. S. ( 1999;). Microbiology altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci U S A 96, 14559–14564.[CrossRef]
    [Google Scholar]
  24. Selbach, M., Moese, S., Hauck, C. R., Meyer, T. F. & Backert, S. ( 2002;). Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J Biol Chem 277, 6775–6778.[CrossRef]
    [Google Scholar]
  25. Tsutsumi, R., Higashi, H., Higuchi, M., Okada, M. & Hatakeyama, M. ( 2003;). Attenuation of Helicobacter pylori CagA-SHP-2 signaling by interaction between CagA and C-terminal Src kinase. J Biol Chem 278, 3664–3670.[CrossRef]
    [Google Scholar]
  26. van den Ent, F., Amos, L. A. & Löwe, J. ( 2001;). Prokaryotic origin of the actin cytoskeleton. Nature 413, 39–44.[CrossRef]
    [Google Scholar]
  27. Weeks, D. L., Eskandari, S., Scott, D. R. & Sachs, G. A. ( 2000;). H+-gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science 287, 482–485.[CrossRef]
    [Google Scholar]
  28. Weel, J. F., van der Hulst, R. W., Gerrits, Y., Roorda, P., Feller, M., Dankert, J., Tytgat, G. N. & van der Ende, A. ( 1996;). The interrelationship between cytotoxin-associated gene A, vacuolating cytotoxin, and Helicobacter pylori-related diseases. J Infect Dis 173, 1171–1175.[CrossRef]
    [Google Scholar]
  29. Xiang, Z., Censini, S., Bayeli, P. F., Telford, J. L., Figura, N., Rappuoli, R. & Covacci, A. ( 1995;). Analysis of expression of CagA and VacA virulence factors in 43 strains of Helicobacter pylori reveals that clinical isolates can be divided into two major types and that CagA is not necessary for expression of the vacuolating cytotoxin. Infect Immun 63, 94–98.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46158-0
Loading
/content/journal/jmm/10.1099/jmm.0.46158-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error