1887

Abstract

A gene () encoding arylamine -acetyltransferase (NAT) has been found in The gene is expressed and the enzyme is active in growing cells. -Acetyltransferase acetylates and inactivates isoniazid (INH), which is a front-line drug used in tuberculosis (TB) therapy. In this study, it was shown that a previously reported G619A single nucleotide polymorphism (SNP) was conserved in two strain families found in the Western Cape Province of South Africa (strain families 3 and 28). Further sequence analysis of isolates in strain family 3 identified a new T529C SNP in NAT resulting in a histidine instead of a tyrosine at position 177. This SNP was found only in isolates from strain family 3, and this mutation affects the highly conserved tyrosine residue close to the active site. Using real-time PCR, the expression of () was determined over a 28 day growth cycle of the reference strain (H37Rv). The expression of occurs early in growth and reaches maximum levels at mid-exponential phase. The exposure of INH-susceptible isolates to low levels of INH resulted in an increase of expression (reference strain H37Rv, which is wild-type for , and isolate 1430, containing both SNPs). An INH-resistant isolate (816) exposed to INH showed no change in expression. The increased expression in the susceptible isolates suggests that INH affects expression. may contribute to INH susceptibility, but in combination with other factors.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46153-0
2005-12-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/54/12/JM541211.html?itemId=/content/journal/jmm/10.1099/jmm.0.46153-0&mimeType=html&fmt=ahah

References

  1. Alland, D., Kramnik, I., Weisbrod, T. R., Otsubo, L., Cerny, R., Miller, L. P., Jacobs, R. F., Jr & Bloom, B. R. ( 1998;). Identification of differentially expressed mRNA in prokaryotic organisms by customized amplification libraries (DECAL): the effect of INH on gene expression in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 95, 13227–13232.[CrossRef]
    [Google Scholar]
  2. Anderton, M. C., Bhakta, S. Patrick, A. L. & Sim, E. ( 2004;). Characterisation of the putative operon containing arylamine N-acetyltransferase (NAT) in mycobacteria. Drug Metab Rev 36, supplement 1, abstract 322.
  3. Banerjee, A., Dubnau, E., Quemard, A., Balasubramanian, V., Sun Um, K., Wilson, T., Collins, D., de Lisle, G. & Jacobs, W. R. ( 1994;). inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263, 227–232.[CrossRef]
    [Google Scholar]
  4. Bhakta, S., Besra, G. S., Upton, A. & 8 other authors ( 2004;). Arylamine N-acetyltransferase is required for synthesis of mycolic acids and complex lipids in Mycobacterium bovis BCG and represents a novel drug target. J Exp Med 199, 1191–1199.[CrossRef]
    [Google Scholar]
  5. Cangelosi, G. A. & Brabant, W. H. J. ( 1997;). Depletion of pre-16S rRNA in starved Escherichia coli cells. Bacteriology 179, 4457–4463.
    [Google Scholar]
  6. Carmo, M., Peiexo, C., Coroadinha, A. S., Alves, P. M., Cruz, P. E. & Carrondo, M. J. T. ( 2004;). Quantitation of MLV-based retroviral vectors using real-time RT-PCR. J Virol Methods 119, 115–119.[CrossRef]
    [Google Scholar]
  7. Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D. & Barrel, B. ( 1998;). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.[CrossRef]
    [Google Scholar]
  8. Ellard, G. A. & Gammon, P. T. ( 1976;). Pharmacokinetics of isoniazid metabolism in man. J Pharmacokinet Biopharm 4, 83–113.[CrossRef]
    [Google Scholar]
  9. Garbe, T. R., Hibler, N. S. & Deretic, V. ( 1996;). Isoniazid induces expression of the antigen 85 complex in Mycobacterium tuberculosis. Antimicrob Agents Chemother 40, 1754–1756.
    [Google Scholar]
  10. Gonzalez-y-Merchand, J. A., Colston, M. J. & Cox, R. A. ( 1998;). Roles of multiple promoters in transcription of ribosomal DNA: effects of growth conditions on precursor rRNA synthesis in mycobacteria. J Bacteriol 180, 5756–5761.
    [Google Scholar]
  11. Grange, J. M. & Zumla, A. ( 2002;). The global emergency of tuberculosis: what is the cause? J R Soc Health 122, 78–81.[CrossRef]
    [Google Scholar]
  12. Gutacker, M. M., Smoot, J. C., Lux Migliaccio, C. A. & 7 other authors ( 2002;). Genome-wide analysis of synonymous single nucleotide polymorphisms in Mycobacterium tuberculosis complex organisms: resolution of genetic relationships among closely related microbial strains. Genetics 162, 1533–1543.
    [Google Scholar]
  13. Hansen, M. C., Nielsen, A. K., Molin, S., Hammer, K. & Kilstrup, M. ( 2001;). Changes in rRNA levels during stress invalidates results from mRNA blotting: fluorescence in situ rRNA hybridization permits renormalization for estimation of cellular mRNA levels. J Bacteriol 183, 4747–4751.[CrossRef]
    [Google Scholar]
  14. Hellyer, T. J., DesJarden, L. E., Hehman, G. L., Cave, M. D. & Eisenach, K. D. ( 1999;). Quantitative analysis of mRNA as a marker for viability of M.tuberculosis. J Clin Microbiol 37, 290–295.
    [Google Scholar]
  15. Kawamura, A., Sandy, J., Upton, A., Noble, M. & Sim, E. ( 2003;). Structural investigation of mutant Mycobacterium smegmatis arylamine N-acetyltransferase: a model for a naturally occurring functional polymorphism in Mycobacterium tuberculosis arylamine N-acetyltransferase. Protein Expr Purif 27, 75–84.[CrossRef]
    [Google Scholar]
  16. Kelly, C. L., Rouse, D. A. & Morris, S. L. ( 1997;). Analysis of aphC gene mutations in isoniazid resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 41, 2057–2058.
    [Google Scholar]
  17. Lee, A. S., Teo, A. S. & Wong, S. Y. ( 2001;). Novel mutations in ndh in isoniazid-resistant Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 45, 2157–2159.[CrossRef]
    [Google Scholar]
  18. Master, S., Zahrt, T. C., Song, J. & Deretic, V. ( 2001;). Mapping of Mycobacterium tuberculosis katG promoters and their differential expression in infected macrophages. J Bacteriol 183, 4033–4039.[CrossRef]
    [Google Scholar]
  19. Mdluli, K., Slayden, R. A., Zhu, Y., Ramaswamy, S., Pan, X., Mead, D., Crane, D. D., Musser, J. & Barry, C. E. I. ( 1998;). Inhibition of a Mycobacterium tuberculosis β-ketoacyl ACP synthase by isoniazid. Science 280, 1607–1610.[CrossRef]
    [Google Scholar]
  20. Meyers, P. R., Bourn, W. R., Steyn, L. M., van Helden, P. D., Beyers, A. D. & Brown, G. D. ( 1998;). Novel method for rapid measurement of growth of mycobacteria in detergent-free media. J Clin Microbiol 36, 2752–2754.
    [Google Scholar]
  21. Musser, M., Kapur, V., Williams, D., Kreiswirth, B., van Soolingen, D. & Van Embden, J. ( 1996;). Characterisation of the catalase-peroxidase gene (katG) and inhA locus in isoniazid resistant and susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J Infect Dis 173, 196–202.[CrossRef]
    [Google Scholar]
  22. NCBI ( 2004;). nhoAN-hydroxyarylamine O-acetyltransferase [Mycobacterium tuberculosis CDC1551] http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=926546
  23. Parkin, D. P., Vandenplas, S., Botha, F. J., Vandenplas, M. L., Seifart, H. I., van Helden, P. D., van der Walt, B. J., Donald, P. R. & van Jaarsveld, P. P. ( 1997;). Trimodality of isoniazid elimination: phenotype and genotype in patients with tuberculosis. Am J Respir Crit Care Med 155, 1717–1722.[CrossRef]
    [Google Scholar]
  24. Payton, M., Auty, R., Delgoda, R., Everett, M. & Sim, E. ( 1999;). Cloning and characterization of arylamine N-acetyltransferase genes from Mycobacterium smegmatis and Mycobacterium tuberculosis: increased expression results in isoniazid resistance. J Bacteriol 181, 1343–1347.
    [Google Scholar]
  25. Payton, M., Gifford, C., Schartau, P., Hagaemier, C., Mushtaq, A., Lucas, S., Pinter, K. & Sim, E. ( 2001a;). Evidence towards the role of arylamine N-acetyltransferase in Mycobacterium smegmatis and development of a specific antiserum against the homologous enzyme of Mycobacterium tuberculosis. Microbiology 147, 3295–3302.
    [Google Scholar]
  26. Payton, M., Mushtaq, A., Yu, T. W., Wu, L.-J., Sinclair, J. & Sim, E. ( 2001b;). Eubacterial arylamine N-acetyltransferases - identification and comparison of 18 members of the protein family with conserved active site cysteine, histidine and aspartate residues. Microbiology 147, 1137–1147.
    [Google Scholar]
  27. Ramaswamy, S. & Musser, J. ( 1998;). Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis. Tuber Lung Dis 79, 3–29.[CrossRef]
    [Google Scholar]
  28. Ramaswamy, S., Reich, R., Dou, S.-H., Jasperse, L., Pan, X., Wanger, A., Quitugua, T. & Gravis, E. A. ( 2003;). Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 47, 1241–1250.[CrossRef]
    [Google Scholar]
  29. Sandy, J., Mushtaq, A., Holton, S. J., Noble, M. & Sim, E. ( 2005;). The catalytic triad of residues of arylamine N-acetyltransferase are all essential for catalytic activity. Biochem J 390, 115–123.[CrossRef]
    [Google Scholar]
  30. Sim, E., Payton, M., Noble, M. & Minchin, R. ( 2000;). An update on genetic, structural and functional studies of arylamine N-acetyltransferases in eucaryotes and procaryotes. Hum Mol Genet 9, 2435–2441.[CrossRef]
    [Google Scholar]
  31. Slayden, R. A. & Barry, C. E. ( 2000;). The genetics and biochemistry of isoniazid resistance in Mycobacterium tuberculosis. Microbes Infect 2, 659–669.[CrossRef]
    [Google Scholar]
  32. Torres, M. J., Criado, A., Palomares, J. C. & Aznar, J. ( 2000;). Use of real-time PCR and fluorimetry for rapid detection of rifampin and isoniazid resistance-associated mutations in Mycobacterium tuberculosis. J Clin Microbiol 38, 3194–3199.
    [Google Scholar]
  33. Upton, A., Mushtaq, A., Victor, T., Sampson, S. L., Sandy, J., Smith, D.-M., van Helden, P. & Sim, E. ( 2001;). Arylamine N-acetyltransferase of Mycobacterium tuberculosis is a polymorphic enzyme and a site of isoniazid metabolism. Mol Microbiol 42, 309–317.[CrossRef]
    [Google Scholar]
  34. Vainrub, A. & Montgomery Petitt, B. ( 2003;). Surface electrostatic effects in oligonucleotide microarrays: control and optimization of binding thermodynamics. Biopolymers 68, 265–270.[CrossRef]
    [Google Scholar]
  35. Vandecasteele, S. J., Peetermans, W. E., Merck, R. & van Eldere, J. ( 2001;). Quantification of expression of Staphylococcus epidermidis housekeeping genes with Taqman quantitative PCR during in vitro growth and under different conditions. J Bacteriol 183, 7094–7101.[CrossRef]
    [Google Scholar]
  36. van Rie, A., Warren, R., Mshanga, I. & 9 other authors ( 2001;). Analysis for a limited number of gene codons can predict drug resistance of Mycobacterium tuberculosis in a high-incidence community. J Clin Microbiol 39, 636–641.[CrossRef]
    [Google Scholar]
  37. Victor, T., Warren, R., Beyers, N. & van Helden, P. ( 1997;). Transmission of multidrug-resistant strains of Mycobacterium tuberculosis in a high incidence community. Eur J Clin Microbial Infect Dis 16, 548–549.[CrossRef]
    [Google Scholar]
  38. Victor, T. C., van Helden, P. D. & Warren, R. ( 2002;). Prediction of drug resistance in M.tuberculosis: molecular mechanism, tools, and applications. IUBMB Life 53, 231–237.[CrossRef]
    [Google Scholar]
  39. Warren, R., Sampson, S. L., Richardson, M., van der Spuy, G. D., Lombard, C. J., Victor, T. C. & van Helden, P. ( 2000;). Mapping of IS6110 flanking regions in clinical isolates of Mycobacterium tuberculosis demonstrates genome plasticity. Mol Microbiol 37, 1405–1416.[CrossRef]
    [Google Scholar]
  40. Weber, W. W. & Hein, D. W. ( 1985;). Arylamine N-acetyltransferases. Pharmacol Rev 37, 25–79.
    [Google Scholar]
  41. Wilson, M., De Risi, J., Kristensen, H. H., Imboden, P., Rane, S. & Brown, P. O. ( 1999;). Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc Natl Acad Sci U S A 96, 12833–12838.[CrossRef]
    [Google Scholar]
  42. WHO ( 2004;). Anti-Tuberculosis Drug Resistance in the World. Report number 3. http://www.who.int/tb/publications/dotsplus_surveillance/en/index.html
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46153-0
Loading
/content/journal/jmm/10.1099/jmm.0.46153-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error