1887

Abstract

The differences in faecal bacterial population between irritable bowel syndrome (IBS) and control subjects have been reported in several studies. The aim of the present study was to compare the predominant and clostridial faecal microbiota of IBS subjects and healthy controls by applying denaturing gradient gel electrophoresis (DGGE) and a recently developed multiplexed and quantitative hybridization-based technique, transcript analysis with the aid of affinity capture (TRAC). According to the results, the studied clostridial groups (, , and ) represented the dominant faecal microbiota of most of the studied subjects, comprising altogether 29–87 % of the total bacteria as determined by the hybridized 16S rRNA. The - group was the dominant subgroup of clostridia, contributing a mean of 43 % of the total bacteria in control subjects and 30 % (constipation type) to 50 % (diarrhoea type) in different IBS symptom category subjects. The proportion of the - group was found to be significantly lower in the constipation-type IBS subjects than in the control subjects. DNA-based PCR-DGGE and RNA-based RT-PCR-DGGE analyses targeted to the predominant bacterial population showed considerable biodiversity as well as uniqueness of the microbiota in each subject, in both control and IBS subject groups. The RT-PCR-DGGE profiles of the IBS subjects further indicated higher instability of the bacterial population compared to the control subjects. The observations suggest that clostridial microbiota, in addition to the instability of the active predominant faecal bacterial population, may be involved in IBS.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46134-0
2006-05-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/5/625.html?itemId=/content/journal/jmm/10.1099/jmm.0.46134-0&mimeType=html&fmt=ahah

References

  1. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R. & Stahl, D. A. ( 1990; ). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56, 1919–1925.
    [Google Scholar]
  2. Balsari, A., Ceccarelli, A., Dubini, F., Fesce, E. & Poli, G. ( 1982; ). The fecal microbial population in the irritable bowel syndrome. Microbiologica 5, 185–194.
    [Google Scholar]
  3. Bartosch, S., Fite, A., Macfarlane, G. T. & McMurdo, M. E. T. ( 2004; ). Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 70, 3575–3581.[CrossRef]
    [Google Scholar]
  4. Bradley, H. K., Wyatt, G. M., Bayliss, C. E. & Hunter, J. O. ( 1987; ). Instability in the faecal flora of a patient suffering from food-related irritable bowel syndrome. J Med Microbiol 23, 29–32.[CrossRef]
    [Google Scholar]
  5. Bustin, S. A. & Nolan, T. ( 2004; ). Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Techniq 15, 155–166.
    [Google Scholar]
  6. Cato, E. P., George, W. L. & Finegold, S. M. ( 1986; ). Genus Clostridium Prazmowski 1880. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1141–1200. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore, MD: Williams & Wilkins.
  7. Collins, M. D., Lawson, P. A., Willems, A., Cordoba, J. J., Fernandez-Garayzabal, J., Gaecia, P., Cai, J., Hippe, H. & Farrow, J. A. E. ( 1994; ). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 144, 812–826.
    [Google Scholar]
  8. Donskey, C. J., Hujer, A. M., Das, S. M., Pultz, N. J., Bonomo, R. A. & Rice, L. B. ( 2003; ). Use of denaturing gradient gel electrophoresis for analysis of the stool microbiota of hospitalized patients. J Microbiol Methods 54, 249–256.[CrossRef]
    [Google Scholar]
  9. Edlund, C. & Nord, C. E. ( 2000; ). Effect on the human normal microflora of oral antibiotics for treatment of urinary tract infections. J Antimicrob Chemother 46, Supplement S1, 41–48.[CrossRef]
    [Google Scholar]
  10. Felske, A., Rheims, H., Wolterink, A., Stackebrandt, E. & Akkermans, A. D. L. ( 1997; ). Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 143, 2983–2989.[CrossRef]
    [Google Scholar]
  11. Franks, A. H., Harmsen, H. J. M., Raangs, G. C., Jansen, G. J., Schut, F. & Welling, G. W. ( 1998; ). Variations in bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64, 3336–3345.
    [Google Scholar]
  12. Harmsen, H. J. M., Gibson, G. R., Elfferich, P., Raangs, G. C., Wideboer-Veloo, A. C. M., Argaiz, A., Roberfroid, M. B. & Welling, G. W. ( 1999; ). Comparison of viable cell counts and fluorescence in situ hybridization using specific rRNA-based probes for the quantification of human fecal bacteria. FEMS Microbiol Lett 183, 125–129.
    [Google Scholar]
  13. Harmsen, H. J. M., Raangs, G. C., Franks, A. H., Wildeboer-Veloo, A. C. M. & Welling, G. W. ( 2002a; ). The effect of the prebiotic inulin and the probiotic Bifidobacterium longum in the fecal microflora of healthy volunteers measured by FISH and DGGE. Microbiol Ecol Health Disease 14, 211–219.
    [Google Scholar]
  14. Harmsen, H. J. M., Raangs, G. C., He, T., Degener, J. E. & Welling, G. W. ( 2002b; ). Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl Environ Microbiol 68, 2982–2990.[CrossRef]
    [Google Scholar]
  15. Hayshi, H., Sakamoto, M. & Benno, Y. ( 2002; ). Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol 46, 535–548.[CrossRef]
    [Google Scholar]
  16. Hold, G. L., Pryde, S. E., Russell, V. J., Furrie, E. & Flint, H. J. ( 2002; ). Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol Ecol 39, 33–39.[CrossRef]
    [Google Scholar]
  17. Hold, G. L., Schwiertz, A., Aminov, R. I., Blaut, M. & Flint, H. J. ( 2003; ). Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl Environ Microbiol 69, 4320–4324.[CrossRef]
    [Google Scholar]
  18. Jansen, G. J., Wilderboer-Veloo, A. C. M., Tonk, R. H. J., Franks, A. H. & Welling, G. W. ( 1999; ). Development and validation of an automated, microscopy-based method for enumeration of groups of intestinal bacteria. J Microbiol Methods 37, 215–221.[CrossRef]
    [Google Scholar]
  19. Josephson, K. L., Gerba, C. P. & Pepper, I. L. ( 1993; ). Polymerase chain reaction detection of nonviable bacterial pathogens. Appl Environ Microbiol 59, 3513–3515.
    [Google Scholar]
  20. King, T. S., Elia, M. & Hunter, J. O. ( 1998; ). Abnormal colonic fermentation in irritable bowel syndrome. Lancet 352, 1187–1189.[CrossRef]
    [Google Scholar]
  21. Klappenbach, J. A., Dunbar, J. M. & Schmidt, T. M. ( 2000; ). rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66, 1328–1333.[CrossRef]
    [Google Scholar]
  22. Madden, J. A. J. & Hunter, J. O. ( 2002; ). A review of the role of the gut microflora in irritable bowel syndrome and the effects of probiotics. Br J Nutr 88, S67–S72.[CrossRef]
    [Google Scholar]
  23. Malinen, E., Rinttilä, T., Kajander, K., Mättö, J., Kassinen, A., Krogius, L., Saarela, M., Korpela, R. & Palva, A. ( 2005; ). Real-time PCR analysis reveals differences between the fecal microbiota of irritable bowel syndrome patients and healthy controls. Am J Gastroenterol 100, 373–382.[CrossRef]
    [Google Scholar]
  24. Mangin, I., Bonnet, R., Seksik, P. & 8 other authors ( 2004; ). Molecular inventory of faecal microflora in patients with Crohn's disease. FEMS Microbiol Ecol 50, 25–36.[CrossRef]
    [Google Scholar]
  25. Marteau, P., Pochart, P., Doré, J., Béra-Maillet, C., Bernalier, A. & Corthier, G. ( 2001; ). Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 67, 4939–4942.[CrossRef]
    [Google Scholar]
  26. Matsuki, T., Watanabe, K., Fujimoto, J., Takada, T. & Tanaka, R. ( 2004; ). Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol 70, 7220–7228.[CrossRef]
    [Google Scholar]
  27. Mättö, J., Maunuksela, L., Kajander, K., Palva, A., Korpela, R., Kassinen, A. & Saarela, M. ( 2005; ). Composition and temporal stability of gastrointestinal microbiota in irritable bowel syndrome – a longitudinal study in IBS and control subjects. FEMS Immunol Med Microbiol 43, 213–222.[CrossRef]
    [Google Scholar]
  28. Nübel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann, R. I., Ludwig, W. & Backhaus, H. ( 1996; ). Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178, 5636–5643.
    [Google Scholar]
  29. Pimentel, M., Chow, E. J. & Lin, H. C. ( 2000; ). Eradication of small intestinal bacterial overgrowth reduces symptoms of irritable bowel syndrome. Am J Gastroenterol 95, 3503–3506.[CrossRef]
    [Google Scholar]
  30. Rigottier-Gois, L., Le Bourhis, A.-G., Gramet, G., Rochet, V. & Doré, J. ( 2003; ). Fluorescent hybridisation combined with flow cytometry and hybridisation of total RNA to analyse the composition of microbial communities in human faeces using 16S rRNA probes. FEMS Microbiol Ecol 43, 237–245.[CrossRef]
    [Google Scholar]
  31. Rinttilä, T., Kassinen, A., Malinen, E., Krogius, L. & Palva, A. ( 2004; ). Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol 97, 1166–1177.[CrossRef]
    [Google Scholar]
  32. Rochet, V., Rigottier-Gois, L., Rabot, S. & Doré, J. ( 2004; ). Validation of fluorescent in situ hybridization combined with flow cytometry for assessing interindividual variation in the composition of human fecal microflora during long-term storage of samples. J Microbiol Methods 59, 263–270.[CrossRef]
    [Google Scholar]
  33. Satokari, R. M., Kataja, K. & Söderlund, H. ( 2005; ). Multiplexed quantification of bacterial 16S rRNA by solution hybridization with oligonucleotide probes and affinity capture. Microb Ecol 50, 120–127.[CrossRef]
    [Google Scholar]
  34. Seksik, P., Rigottier-Gois, L., Gramet, G., Sutren, M., Pochart, P., Marteau, P., Jian, R. & Doré, J. ( 2003; ). Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut 52, 237–242.[CrossRef]
    [Google Scholar]
  35. Sghir, A., Gramet, G., Suau, A., Rochet, V., Pochart, P. & Doré, J. ( 2000; ). Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 66, 2263–2266.[CrossRef]
    [Google Scholar]
  36. Suau, A., Bonnet, R., Sutren, M., Godon, J.-J., Gibson, G., Collins, M. D. & Doré, J. ( 1999; ). Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65, 4799–4807.
    [Google Scholar]
  37. Tannock, G. W., Munro, K., Biniloni, R., Simon, M. A., Hargreaves, P., Gopal, P., Harmsen, H. & Welling, G. ( 2004; ). Impact of consumption of oligosaccharide-containing biscuits on the fecal microbiota of humans. Appl Environ Microbiol 70, 2129–2136.[CrossRef]
    [Google Scholar]
  38. Thompson, W. G., Longstreth, G. F., Drossman, D. A., Heaton, K. W., Irvine, E. J. & Müller-Lissner, S. A. ( 1999; ). Functional bowel disorders and functional abdominal pain. Gut 45, supplement 2, II43–II47.
    [Google Scholar]
  39. Vanhoutte, T., Huys, G., De Brandt, E. & Swings, J. ( 2004; ). Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers. FEMS Microbiol Ecol 48, 437–446.[CrossRef]
    [Google Scholar]
  40. Wang, X., Heazlewood, S. P., Krause, D. O. & Florin, T. H. J. ( 2003; ). Molecular characterization of the microbial species that colonize human ileal and colonic mucosa by using 16S rDNA sequence analysis. J Appl Microbiol 95, 508–520.[CrossRef]
    [Google Scholar]
  41. Wilson, K. H. & Blitchington, R. B. ( 1996; ). Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol 62, 2273–2278.
    [Google Scholar]
  42. Zoetendal, E. G., Akkermans, A. D. & de Vos, W. M. ( 1998; ). Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64, 3854–3859.
    [Google Scholar]
  43. Zoetendal, E. G., Akkermans, A. D. L., Akkermans-van Vliet, W. M., de Visser, J. A. G. M. & de Vos, W. M. ( 2001; ). The host genotype affects the bacterial community in the human gastrointestinal tract. Microbiol Ecol Health Dis 13, 129–134.[CrossRef]
    [Google Scholar]
  44. Zoetendal, E. G., Ben-Amor, K., Harmsen, H. J. M., Schut, F., Akkermans, A. D. L. & de Vos, W. M. ( 2002; ). Quantification of uncultured Ruminococcus obeum-like bacteria in human fecal samples by fluorescent in situ hybridization and flow cytometry using 16S rRNA-targeted probes. Appl Environ Microbiol 68, 4225–4232.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46134-0
Loading
/content/journal/jmm/10.1099/jmm.0.46134-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error