1887

Abstract

Pneumonic plague is an aggressive disease that is clinically difficult to treat. Inhibition of attachment using oligosaccharide receptor mimics may provide an alternative to antibiotics. The virulent strain GB was demonstrated to attach to the murine monocyte cell line (J774A.1) and a range of human respiratory epithelial cell lines: nasal (RPMI-2650), bronchial (BEAS2-B) and alveolar (A549). Attachment was greatest to the A549 and BEAS2-B cell lines. Pre-treatment of the cell lines with tunicamycin reduced attachment by 55–65 %, indicating the importance of cell-surface carbohydrates in adhesion. The cell lines displayed differences in the oligosaccharides that inhibited attachment. -Nitrophenol was the best inhibitor for each cell line. Disaccharides such as GalNAc1-3Gal and GalNAc1-4Gal were also good inhibitors, particularly for the RPMI-2650 cell line. This demonstrates the potential of oligosaccharides as potential anti-adhesion therapeutics.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46102-0
2006-03-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/3/309.html?itemId=/content/journal/jmm/10.1099/jmm.0.46102-0&mimeType=html&fmt=ahah

References

  1. Barghouthi, S., Guerdoud, L. M. & Speert, D. P. ( 1996; ). Inhibition by dextran of Pseudomonas aeruginosa adherence to epithelial cells. Am J Respir Crit Care Med 154, 1788–1793.[CrossRef]
    [Google Scholar]
  2. Boyd, A. P., Sory, M.-P., Iriarte, M. & Cornelis, G. R. ( 1998; ). Heparin interferes with translocation of Yop proteins into HeLa cells and binds LcrG, a regulatory component of the Yersinia Yop apparatus. Mol Microbiol 27, 425–436.[CrossRef]
    [Google Scholar]
  3. Bryan, R., Feldman, M., Jawetz, S. C., Rajan, S., DiMango, E., Tang, H. B., Scheffler, L., Speert, D. P. & Prince, A. ( 1999; ). The effects of aerosolized dextran in a mouse model of Pseudomonas aeruginosa pulmonary infection. J Infect Dis 179, 1449–1458.[CrossRef]
    [Google Scholar]
  4. Byrne, W. R., Welkos, S. L., Pitt, M. L. & 7 other authors ( 1998; ). Antibiotic treatment of experimental pneumonic plague in mice. Antimicrob Agents Chem 42, 675–681.[CrossRef]
    [Google Scholar]
  5. Cundell, D. R. & Tuomanen, E. I. ( 1994; ). Receptor specificity of adherence of Streptococcus pneumoniae to human type-II pneumocytes and vascular endothelial cells in vitro. Microb Pathog 17, 361–374.[CrossRef]
    [Google Scholar]
  6. de Bentzmann, S., Plotkowski, C. & Puchelle, E. ( 1996; ). Receptors in the Pseudomonas aeruginosa adherence to injured and repairing airway epithelium. Am J Respir Crit Care Med 154, S155–S162.[CrossRef]
    [Google Scholar]
  7. Doyle, R. J. ( 2000; ). Contribution of the hydrophobic effect to microbial infection. Microbes Infect 2, 391–400.[CrossRef]
    [Google Scholar]
  8. Falkowski, W., Edwards, M. & Schaeffer, A. J. ( 1986; ). Inhibitory effect of substituted aromatic hydrocarbons on adherence of Escherichia coli to human epithelial cells. Infect Immun 52, 863–866.
    [Google Scholar]
  9. Finegold, M. J. ( 1969; ). Pneumonic plague in monkeys. An electron microscopic study. Am J Pathol 54, 167–185.
    [Google Scholar]
  10. Galimand, M., Guiyoule, A., Gerbaud, G., Rasoamanana, B., Chanteau, S., Carniel, E. & Courvalin, P. ( 1997; ). Multidrug resistance in Yersinia pestis mediated by a transferable plasmid. N Engl J Med 337, 677–680.[CrossRef]
    [Google Scholar]
  11. Hambrook, J., Titball, R. & Lindsay, C. ( 2004; ). The interaction of Pseudomonas aeruginosa PAK with human and animal respiratory tract cell lines. FEMS Microbiol Lett 238, 49–55.
    [Google Scholar]
  12. Idänpään-Heikkilä, I., Simon, P. M., Zopf, M., Vullo, T., Cahill, P., Sokol, K. & Tuomanen, E. ( 1997; ). Oligosaccharides interfere with the establishment and progression of experimental pneumococcal pneumonia. J Infect Dis 176, 704–712.[CrossRef]
    [Google Scholar]
  13. Inglesby, T. V., Dennis, D. T., Henderson, D. A. & 16 other authors ( 2000; ). Plague as a biological weapon: medical and public health management. JAMA 283, 2281–2290.[CrossRef]
    [Google Scholar]
  14. Kienle, Z., Emody, L., Svanborg, C. & O'Toole, P. W. ( 1992; ). Adhesive properties conferred by the plasminogen activator of Yersinia pestis. J Gen Microbiol 138, 1679–1687.[CrossRef]
    [Google Scholar]
  15. Krishna, K. & Chitkara, R. K. ( 2003; ). Pneumonic plague. Semin Respir Infect 18, 159–167.
    [Google Scholar]
  16. Krivan, H. C., Roberts, D. D. & Ginsburg, V. ( 1988; ). Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAcβ1-4Gal found in some glycolipids. Proc Natl Acad Sci U S A 85, 6157–6161.[CrossRef]
    [Google Scholar]
  17. Lähteenmäki, K., Virkola, R., Sarén, A., Emödy, L. & Korhonen, T. K. ( 1998; ). Expression of plasminogen activator Pla of Yersinia pestis enhances bacterial attachment to the mammalian extracellular matrix. Infect Immun 66, 5755–5762.
    [Google Scholar]
  18. Lähteenmäki, K., Kuusela, P. & Korhonen, T. K. ( 2001; ). Bacterial plasminogen activators and receptors. FEMS Microbiol Rev 25, 531–552.[CrossRef]
    [Google Scholar]
  19. Lindler, L. E. & Tall, B. D. ( 1993; ). Yersinia pestis pH6 antigen forms fimbriae and is induced by intracellular association with macrophages. Mol Microbiol 8, 311–324.[CrossRef]
    [Google Scholar]
  20. Lindler, L. E., Klempner, M. S. & Straley, S. C. ( 1990; ). Yersinia pestis pH6 antigen: genetic, biochemical, and virulence characterization of a protein involved in the pathogenesis of bubonic plague. Infect Immun 58, 2569–2577.
    [Google Scholar]
  21. Ofek, I., Hasty, D. L. & Doyle, R. J. ( 2003; ). Antiadhesion therapy. In Bacterial Adhesion to Animal Cells and Tissues, pp. 157–177. Edited by I. Ofek, D. L. Hasty & R. J. Doyle. Washington, DC: American Society for Microbiology.
  22. Pærregaard, A., Espersen, F., Jensen, O. M. & Skurnik, M. ( 1991; ). Interactions between Yersinia enterocolitica and rabbit ileal mucus: growth, adhesion, penetration, and subsequent changes in surface hydrophobicity and ability to adhere to ileal brush border membrane vesicles. Infect Immun 59, 253–260.
    [Google Scholar]
  23. Payne, D., Tatham, D., Williamson, E. D. & Titball, R. W. ( 1998; ). The pH6 antigen of Yersinia pestis binds to β1-linked galactosyl residues in glycosphingolipids. Infect Immun 66, 4545–4548.
    [Google Scholar]
  24. Perry, R. D. & Fetherston, J. D. ( 1997; ). Yersinia pestis – etiologic agent of plague. Clin Microbiol Rev 10, 35–66.
    [Google Scholar]
  25. Putzker, M., Sauer, H. & Sobe, D. ( 2001; ). Plague and other human infections caused by Yersinia species. Clin Lab 47, 453–466.
    [Google Scholar]
  26. Rojas, C. M., Ham, J. H., Deng, W.-L., Doyle, J. J. & Collmer, A. ( 2002; ). HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings. Proc Natl Acad Sci U S A 99, 13142–13147.[CrossRef]
    [Google Scholar]
  27. Rosenberg, M., Greenstein, R., Barki, M. & Goldberg, S. ( 1996; ). Hydrophobic interactions as a basis for interfering in microbial adhesion. In Toward Anti-adhesion Therapy for Microbial Disease, pp. 241–247. Edited by I. Kahane & I. Ofek. New York: Plenum Press.
  28. Russell, P., Eley, S. M., Hibbs, S. E., Manchee, R. J., Stagg, A. J. & Titball, R. W. ( 1995; ). A comparison of plague vaccine, USP and EV76 vaccine induced protection against Yersinia pestis in a murine model. Vaccine 13, 1551–1556.[CrossRef]
    [Google Scholar]
  29. Russell, P., Eley, S. M., Green, M. & 8 other authors ( 1998; ). Efficacy of doxycycline and ciprofloxacin against experimental Yersinia pestis infection. J Antimicrob Chemother 41, 301–305.[CrossRef]
    [Google Scholar]
  30. Sharon, N. & Ofek, I. ( 2002; ). Fighting infectious diseases with inhibitors of microbial adhesion to host tissues. Crit Rev Food Sci Nutr 42 (Suppl.), 267–272.[CrossRef]
    [Google Scholar]
  31. Steward, J., Lever, M. S., Russell, P., Beedham, R. J., Stagg, A. J., Taylor, R. R. & Brooks, T. J. G. ( 2004; ). Efficacy of the latest fluoroquinolones against experimental Yersinia pestis. Int J Antimicrob Agents 24, 609–612.[CrossRef]
    [Google Scholar]
  32. Straley, S. C. ( 1993; ). Adhesins in Yersinia pestis. Trends Microbiol 1, 285–286.[CrossRef]
    [Google Scholar]
  33. Thomas, R. J. & Brooks, T. J. ( 2004a; ). Oligosaccharide receptor mimics inhibit Legionella pneumophila attachment to human respiratory epithelial cells. Microb Pathog 36, 83–92.[CrossRef]
    [Google Scholar]
  34. Thomas, R. & Brooks, T. ( 2004b; ). Common oligosaccharide moieties inhibit the adherence of typical and atypical respiratory pathogens. J Med Microbiol 53, 833–840.[CrossRef]
    [Google Scholar]
  35. Wong, J. D., Barash, J. R., Sandfort, R. F. & Janda, J. M. ( 2000; ). Susceptibilities of Yersinia pestis strains to 12 antimicrobial agents. Antimicrob Agents Chemother 44, 1995–1996.[CrossRef]
    [Google Scholar]
  36. Zopf, D. & Roth, S. ( 1996; ). Oligosaccharide anti-infective agents. Lancet 347, 1017–1021.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46102-0
Loading
/content/journal/jmm/10.1099/jmm.0.46102-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error