1887

Abstract

A membrane-filter-based, fluorescent Gram stain method for bacterial detection in cerebrospinal fluid samples was developed and evaluated as a rapid, sensitive alternative to standard Gram stain protocols. A recently developed, modified version of the aluminium oxide membrane Anopore with low-fluorescence optical properties showed superior performance in this application. Other aspects of the fluorescent Gram stain system that were evaluated include membrane filter selection, strategies to reduce fluorescence fading and the effect of patient blood cells on bacterial detection in the fluorescently stained cerebrospinal fluid samples. The combination of the membrane filter's bacteria-concentrating ability and absolute retention along with high-contrast, fluorescent Gram discriminating dyes enabled rapid bacterial detection and Gram discrimination, with a 1–1.5 order of magnitude increase in the bacterial concentration limit of detection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46092-0
2005-09-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/54/9/JM540906.html?itemId=/content/journal/jmm/10.1099/jmm.0.46092-0&mimeType=html&fmt=ahah

References

  1. Beveridge T. J. 2001; Use of the gram stain in microbiology. Biotechnol Histochem 76:111–118 [CrossRef]
    [Google Scholar]
  2. Bingen E., Lambert-Zechovsky N., Mariani-Kurkdjian P., Doit C., Aujard Y., Fournerie F., Mathieu H. 1990; Bacterial counts in cerebrospinal fluid of children with meningitis. Eur J Clin Microbiol Infect Dis 9:278–281 [CrossRef]
    [Google Scholar]
  3. Bitton G., Dutton R. J., Foran J. A. 1983; New rapid technique for counting microorganisms directly on membrane filters. Stain Technol 58:343–346
    [Google Scholar]
  4. Durtschi J. D., Erali M., Herrmann M. G., Elgort M. G., Voelkerding K. V., Smith R. E. 2005; Optically improved aluminum oxide membrane through electroless Ni modification. J Membr Sci 248:81–87 [CrossRef]
    [Google Scholar]
  5. Feldman W. E. 1977; Relation of concentrations of bacteria and bacterial antigen in cerebrospinal fluid to prognosis in patients with bacterial meningitis. N Engl J Med 296:433–435 [CrossRef]
    [Google Scholar]
  6. Forster S., Snape J. R., Lappin-Scott H. M., Porter J. 2002; Simultaneous fluorescent gram staining and activity assessment of activated sludge bacteria. Appl Environ Microbiol 68:4772–4779 [CrossRef]
    [Google Scholar]
  7. Gunasekera T. S., Veal D. A., Attfield P. V. 2003; Potential for broad applications of flow cytometry and fluorescence techniques in microbiological and somatic cell analyses of milk. Int J Food Microbiol 85:269–279 [CrossRef]
    [Google Scholar]
  8. Holm C., Jespersen L. 2003; A flow-cytometric gram-staining technique for milk-associated bacteria. Appl Environ Microbiol 69:2857–2863 [CrossRef]
    [Google Scholar]
  9. Jones S. E., Ditner S. A., Freeman C., Whitaker C. J., Lock M. A. 1989; Comparison of a new inorganic membrane filter (Anopore) with a track-etched polycarbonate membrane filter (Nuclepore) for direct counting of bacteria. Appl Environ Microbiol 55:529–530
    [Google Scholar]
  10. La Scolea L. J. Jr, Dryja D. 1984; Quantitation of bacteria in cerebrospinal fluid and blood of children with meningitis and its diagnostic significance. J Clin Microbiol 19:187–190
    [Google Scholar]
  11. Lauer B. A., Reller L. B., Mirrett S. 1981; Comparison of acridine orange and Gram stains for detection of microorganisms in cerebrospinal fluid and other clinical specimens. J Clin Microbiol 14:201–205
    [Google Scholar]
  12. Leib S. L., Tauber M. G. 1999a; Meningitis (II) – acute bacterial meningitis. Ther Umsch 56:640–646 (in German [CrossRef]
    [Google Scholar]
  13. Leib S. L., Tauber M. G. 1999b; Meningitis (I) – differential diagnosis; aseptic and chronic meningitis. Ther Umsch 56:631–639 (in German [CrossRef]
    [Google Scholar]
  14. Lim L. C., Pennell D. R., Schell R. F. 1990; Rapid detection of bacteria in cerebrospinal fluid by immunofluorescence staining on membrane filters. J Clin Microbiol 28:670–675
    [Google Scholar]
  15. Manders E. M. M., Kimura H., Cook P. R. 1999; Direct imaging of DNA in living cells reveals the dynamics of chromosome formation. J Cell Biol 144:813–822 [CrossRef]
    [Google Scholar]
  16. Mason D. J., Shanmuganathan S., Mortimer F. C., Gant V. A. 1998; A fluorescent Gram stain for flow cytometry and epifluorescence microscopy. Appl Environ Microbiol 64:2681–2685
    [Google Scholar]
  17. Pelc S. 1982; Cytocentrifugation of cerebrospinal fluid with dextran: improvement of the standard technique using the cytospin apparatus. Acta Cytol 26:721–724
    [Google Scholar]
  18. Popescu A., Doyle R. J. 1996; The Gram stain after more than a century. Biotechnol Histochem 71:145–151 [CrossRef]
    [Google Scholar]
  19. Romero S., Schell R. F., Pennell D. R. 1988; Rapid method for the differentiation of gram-positive and gram-negative bacteria on membrane filters. J Clin Microbiol 26:1378–1382
    [Google Scholar]
  20. Saida H., Ytow N., Seki H. 1998; Photometric application of the Gram stain method to characterize natural bacterial populations in aquatic environments. Appl Environ Microbiol 64:742–747
    [Google Scholar]
  21. Sizemore R. K., Caldwell J. J., Kendrick A. S. 1990; Alternate gram staining technique using a fluorescent lectin. Appl Environ Microbiol 56:2245–2247
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46092-0
Loading
/content/journal/jmm/10.1099/jmm.0.46092-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error