1887

Abstract

In this study the effects of 2-amino-phenoxazine-3-one (phenoxazine derivate, Phx-3) on () growth in human monocytic THP-1 cells as well as human epithelial HEp-2 cells were examined. Cells were infected with bacteria at an m.o.i. of 10 by centrifugation. After washing to remove any remaining bacteria, the cells were incubated with or without Phx-3 in the presence or absence of tryptophan for 72 h. The bacteria in cells were assessed by staining of chlamydial inclusions with FITC-labelled anti-chlamydial antibody, electron microscopic analysis, real-time RT-PCR specific for 16S rRNA and propagation on HEp-2 cells. Treatment with Phx-3 significantly inhibited growth of in THP-1 and HEp-2 cells. A decrease in the number of bacterial 16S rRNA transcripts was also confirmed in both cell lines by real-time RT-PCR. Electron microscopic studies revealed that treatment with Phx-3 induces bacterial destruction in most of the inclusion bodies in these cells. Addition of tryptophan to the culture slightly blocked the growth inhibition of by Phx-3. The reagents did not show any cytotoxicity to the cells at the concentrations used. The results suggest that Phx-3 inhibits replication in human monocytic cells as well as epithelial cells, partially depending on the tryptophan-metabolic pathway of host cells. Thus, Phx-3 might be a useful compound for controlling growth in cells and may be an alternative conventional therapy.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46090-0
2005-12-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/54/12/JM541205.html?itemId=/content/journal/jmm/10.1099/jmm.0.46090-0&mimeType=html&fmt=ahah

References

  1. Abe, A., Yamane, M. & Tomoda, A. ( 2001;). Prevention of growth of human lung carcinoma cells and induction of apoptosis by a novel phenoxazinone, 2-amino-4,4α-dihydro-4α,7-dimethyl-3H-phenoxazine-3-one. Anti-Cancer Drugs 12, 377–383.[CrossRef]
    [Google Scholar]
  2. Airenne, S., Surcel, H. M., Sahney, H., Laitinen, K., Paavonen, J., Saikku, P. & Laurila, A. ( 1999;). Chlamydia pneumoniae infection in human monocytes. Infect Immun 67, 1445–1449.
    [Google Scholar]
  3. Aldus, M. B., Grayston, J. T., Wang, S. P. & Foy, H. M. ( 1992;). Seroepidemiology of Chlamydia pneumoniae TWAR infection in Seattle families, 1966–1976. J Infect Dis 166, 646–649.[CrossRef]
    [Google Scholar]
  4. Azuine, M. A., Tokuda, H., Takayasu, J., Enjyo, F., Mukainaka, T., Konoshima, T., Nishino, H. & Kapadia, G. J. ( 2004;). Cancer chemopreventive effect of phenothiazines and related tri-heterocyclic analogues in the 12-σ-tetradecanoylphorbol-13-acetate promoted Epstein-Barr virus early antigen activation and the mouse skin two-stage carcinogenesis models. Pharmacol Res 49, 161–169.[CrossRef]
    [Google Scholar]
  5. Beatty, W. L., Byrne, G. I. & Morrison, R. P. ( 1993;). Morphologic and antigenic characterization of interferon gamma-mediated persistent Chlamydia trachomatis infection in vitro. Proc Natl Acad Sci U S A 90, 3998–4002.[CrossRef]
    [Google Scholar]
  6. Berger, M., Schroder, B., Daeschlein, G., Schneider, W., Busjahn, A., Buchwalow, I., Luft, F. C. & Haller, H. ( 2000;). Chlamydia pneumoniae DNA in non-coronary atherosclerotic plaques and circulating leukocytes. J Lab Clin Med 136, 194–200.[CrossRef]
    [Google Scholar]
  7. Byrne, G. I., Lehmann, L. K. & Landry, G. J. ( 1986;). Induction of tryptophan catabolism is the mechanism for gamma-interferon-mediated inhibition of intracellular Chlamydia psittaci replication in T24 cells. Infect Immun 53, 347–351.
    [Google Scholar]
  8. Esposito, G., Blasi, F., Allegra, L. & 8 other authors ( 1999;). Demonstration of viable Chlamydia pneumoniae in atherosclerotic plaques of carotid arteries by reverse transcriptase polymerase chain reaction. Ann Vasc Surg 13, 421–425.[CrossRef]
    [Google Scholar]
  9. Fan, T., Lu, H., Hu, H., Shi, L., McClarty, G. A., Nance, D., Greenberg, A. H., & Zhong, G. ( 1998;). Inhibition of apoptosis in chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J Exp Med 187, 487–496.[CrossRef]
    [Google Scholar]
  10. Gaydos, C. A., Summersgill, J. T., Sahney, N. N., Ramirez, J. A. & Quinn, T. C. ( 1996;). Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells. Infect Immun 64, 1614–1620.
    [Google Scholar]
  11. Gerard, H. C., Schumacher, H. R., El-Gabalawy, H., Goldbach-Mansky, R. & Hudson, A. P. ( 2000;). Chlamydia pneumoniae present in the human synovium are viable and metabolically active. Microb Pathog 29, 17–24.[CrossRef]
    [Google Scholar]
  12. Gieffers, J., Fullgraf, H., Jahn, J., Klinger, M., Dalhoff, K., Katus, H. A., Solbach, W. & Maass, M. ( 2001;). Chlamydia pneumoniae infection in circulating human monocytes is refractory to antibiotic treatment. Circulation 103, 351–356.[CrossRef]
    [Google Scholar]
  13. Grayston, J. T., Kuo, C. C., Wang, S. P. & Altman, J. ( 1986;). A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory tract infections. N Engl J Med 315, 161–168.[CrossRef]
    [Google Scholar]
  14. Hahn, D. L., Dodge, R. W. & Golubjatnikov, R. ( 1991;). Association of Chlamydia pneumoniae (strain TWAR) infection with wheezing, asthmatic bronchitis, and adult-onset asthma. JAMA 266, 225–230.[CrossRef]
    [Google Scholar]
  15. Haranaga, S., Ikejima, H., Yamaguchi, H., Friedman, H. & Yamamoto, Y. ( 2002;). Analysis of Chlamydia pneumoniae growth in cells by reverse transcription-PCR targeted to bacterial gene transcripts. Clin Diagn Lab Immunol 9, 313–319.
    [Google Scholar]
  16. Holmes, S. C. & Gait, M. J. ( 2003;). The synthesis of 2′-O-methyl G-clamp containing oligonucleotides and their inhibition of the HIV-1 Tat-TAR interaction. Nucleosides Nucleotides Nucleic Acids 22, 1259–1262.[CrossRef]
    [Google Scholar]
  17. Ishida, R., Yamanaka, S., Kawai, H., Ito, H., Iwai, M., Nishizawa, M., Hamatake, M. & Tomoda, A. ( 1996;). Antitumor activity of 2-amino-4,4 alpha-dihydro-4 alpha, 7-dimethyl-3H-phenoxazine-3-one, a novel phenoxazine derivative produced by the reaction of 2-amino-5-methylphenol with bovine hemolysate. Anticancer Drugs 7, 591–595.[CrossRef]
    [Google Scholar]
  18. Iwata, A., Yamaguchi, T., Sato, K., Izumi, R. & Tomoda, A. ( 2003;). Antiviral activity of 2-amino-4,4α-dihydro-4α-7-dimethyl-3H-phenoxazine-3-one on poliovirus. Tohoku J Exp Med 200, 161–165.[CrossRef]
    [Google Scholar]
  19. Lin, T. M., Campbell, L. A., Rosenfeld, M. E. & Kuo, C. C. ( 2000;). Monocyte-endothelial cell coculture enhances infection of endothelial cells with Chlamydia pneumoniae. J Infect Dis 181, 1096–1100.[CrossRef]
    [Google Scholar]
  20. Moazed, T. C., Kuo, C. C., Grayston, J. T. & Campbell, L. A. ( 1998;). Evidence of systemic dissemination of Chlamydia pneumoniae via macrophages in the mouse. J Infect Dis 177, 1322–1325.[CrossRef]
    [Google Scholar]
  21. Ossewaarde, J. M., de Vries, A., Bestebroer, T. & Angulo, A. F. ( 1996;). Application of a Mycoplasma group-specific PCR for monitoring decontamination of Mycoplasma-infected Chlamydia sp.strains. Appl Environ Microbiol 62, 328–331.
    [Google Scholar]
  22. Roblin, P. M., Dumornay, W. & Hammerschlag, M. R. ( 1992;). Use of HEp-2 cells for improved isolation and passage of Chlamydia pneumoniae. J Clin Microbiol 30, 1968–1971.
    [Google Scholar]
  23. Rottenberg, M., Gigliotti-Rothfuchs, A. & Wigzell, H. ( 2002;). The role of IFN-γ in the outcome of chlamydial infection. Curr Opin Immunol 14, 444–451.[CrossRef]
    [Google Scholar]
  24. Saikku, P. ( 1992;). The epidemiology and significance of Chlamydia pneumoniae. J Infect 25 (Suppl. 1), 27–34.
    [Google Scholar]
  25. Saikku, P., Wang, S. P., Kleemola, M., Brander, E., Rusanen, E. & Grayston, J. T. ( 1985;). An epidemic of mild pneumonia due to an unusual strain of Chlamydia psittaci. J Infect Dis 151, 832–839.[CrossRef]
    [Google Scholar]
  26. Shaw, E. I., Dooley, C. A., Fischer, E. R., Scidmore, M. A., Fields, K. A. & Hackstadt, T. ( 2000;). Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle. Mol Microbiol 37, 913–925.[CrossRef]
    [Google Scholar]
  27. Shemer, Y. & Sarov, I. ( 1985;). Inhibition of growth of Chlamydia trachomatis by human gamma interferon. Infect Immun 48, 592–596.
    [Google Scholar]
  28. Summersgill, J. T., Sahney, N. N., Gaydos, C. A., Quinn, T. C. & Ramirez, J. A. ( 1995;). Inhibition of Chlamydia pneumoniae growth in HEp-2 cells pretreated with gamma interferon and tumor necrosis factor alpha. Infect Immun 63, 2801–2803.
    [Google Scholar]
  29. Tomoda, A., Yamaguchi, J., Kojima, H., Amemiya, H. & Yoneyama, Y. ( 1986;). Mechanism of σ-aminohenol metabolism in human erythrocytes. FEBS Lett 196, 44–48.[CrossRef]
    [Google Scholar]
  30. Tomoda, A., Hamashima, H., Arisawa, M., Kikuchi, T., Tezuka, Y. & Koshimura, S. ( 1992;). Phenoxazine synthesis by human hemoglobin. Biochem Biophys Acta 1117, 306–314.[CrossRef]
    [Google Scholar]
  31. Vasilescu, A., Andreescu, S., Bala, C., Litescu, S. C., Noguer, T. & Marty, J. L. ( 2003;). Screen-printed electrodes with electropolymerized Meldola Blue as versatile detectors in biosensors. Biosens Bioelectron 18, 781–790.[CrossRef]
    [Google Scholar]
  32. von Hertzen, L., Leinonen, M., Surcel, H. M., Karjalainen, J. & Saikku, P. ( 1995;). Measurement of sputum antibodies in the diagnosis of acute and chronic respiratory infections associated with Chlamydia pneumoniae. Clin Diagn Lab Immunol 2, 454–457.
    [Google Scholar]
  33. Yamaguchi, H., Haranaga, S., Friedman, H., Moor, J. A., Muffly, K. E. & Yamamoto, Y. ( 2002;). A Chlamydia pneumoniae infection model using established human lymphocyte cell lines. FEMS Microbiol Lett 216, 229–234.[CrossRef]
    [Google Scholar]
  34. Yamaguchi, H., Friedman, H., Yamamoto, M., Yasuda, K. & Yamamoto, Y. ( 2003;). Chlamydia pneumoniae resists antibiotics in lymphocytes. Antimicrob Agents Chemother 47, 1972–1975.[CrossRef]
    [Google Scholar]
  35. Yamaguchi, H., Yamada, M., Uruma, T., Kanamori, M., Goto, H., Yamamoto, Y. & Kamiya, S. ( 2004;). Prevalence of viable Chlamydia pneumoniae in peripheral blood mononuclear cells of healthy blood donors. Transfusion 44, 1072–1078.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46090-0
Loading
/content/journal/jmm/10.1099/jmm.0.46090-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error