1887

Abstract

is one of the most important causes of pneumonia in foals and has emerged as a significant opportunistic pathogen of immunosuppressed hosts such as human immunodeficiency virus-infected patients. Virulent harbouring an 85 kb plasmid, but not the avirulent form lacking the plasmid, has the ability to survive in macrophages. However, the survival mechanism is not known. In the present study, morphological interactions were observed between virulent or plasmid-cured avirulent and phagolysosomes in murine macrophage-like J774.1 cells by immunocytological methods. The J774.1 cells phagocytosed virulent and avirulent bacteria to a similar extent, and both bacteria replicated in single membrane vacuoles at similar rates up to 6 h after infection. Thereafter, the virulent bacteria continued to grow, whereas the avirulent bacteria stopped growing. When the infected cells were stained with phagosomal and lysosomal markers and observed with a confocal fluorescence microscope, the majority of phagosomes containing these bacteria were fused with lysosomes. Neither organism has the ability to hinder phagosome-lysosome fusion. The acidity in phagolysosomes containing was examined by staining with LysoTracker Red DND-99, an acidotropic probe. The phagolysosomes containing virulent organisms were not acidic as compared with avirulent organisms. Over 90 % of the phagolysosomes containing avirulent were stained with LysoTracker 6 h after infection, whereas less than 50 % of those containing virulent were stained. Furthermore, when the supernatant obtained from a virulent culture was added to the cell cultures, the acidity of acidic compartments in macrophages was reduced. The authors conclude that some substance(s) produced by virulent suppress acidification in phagolysosomes, and help survival and replication in the bactericidal environment.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46086-0
2005-11-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/54/11/JM541102.html?itemId=/content/journal/jmm/10.1099/jmm.0.46086-0&mimeType=html&fmt=ahah

References

  1. Akporiaye, E. T., Rowatt, J. D., Aragon, A. A. & Baca, O. G. ( 1983;). Lysosomal response of a murine macrophage-like cell line persistently infected with Coxiella burnetii. Infect Immun 40, 1155–1162.
    [Google Scholar]
  2. Arenas, G. N., Staskevich, A. S., Aballay, A. & Mayorga, L. S. ( 2000;). Intracellular trafficking of Brucella abortus in J774 macrophages. Infect Immun 68, 4255–4263.[CrossRef]
    [Google Scholar]
  3. Benoit, S., Taouji, S., Benachour, A. & Hartke, A. ( 2000;). Resistance of Rhodococcus equi to acid pH. Int J Food Microbiol 55, 295–298.[CrossRef]
    [Google Scholar]
  4. Benoit, S., Benachour, A., Taouji, S., Auffray, Y. & Hartke, A. ( 2001;). Induction of vap genes encoded by the virulence plasmid of Rhodococcus equi during acid tolerance response. Res Microbiol 152, 439–449.[CrossRef]
    [Google Scholar]
  5. Benoit, S., Benachour, A., Taouji, S., Auffray, Y. & Hartke, A. ( 2002;). H2O2, which causes macrophage-related stress, triggers induction of expression of virulence-associated plasmid determinants in Rhodococcus equi. Infect Immun 70, 3768–3776.[CrossRef]
    [Google Scholar]
  6. Blum, J. S., Fiani, M. L., Stahl, P. D. ( 1991;). Localization of cathepsin D in endosomes: characterization and biological importance. Adv Exp Med Biol 306, 281–287.
    [Google Scholar]
  7. Byrne, B. A., Prescott, J. F., Palmer, G. H., Takai, S., Nicholson, V. M., Alperin, D. C. & Hines, S. A. ( 2001;). Virulence plasmid of Rhodococcus equi contains inducible gene family encoding secreted proteins. Infect Immun 69, 650–656.[CrossRef]
    [Google Scholar]
  8. Clemens, D. L. & Horwitz, M. A. ( 1996;). The Mycobacterium tuberculosis phagosome interacts with early endosomes and is accessible to exogenously administered transferrin. J Exp Med 184, 1349–1355.[CrossRef]
    [Google Scholar]
  9. Fratti, R. A., Backer, J. M., Gruenberg, J., Corvera, S. & Deretic, V. ( 2001;). Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 154, 631–644.[CrossRef]
    [Google Scholar]
  10. Fukuda, M. ( 1991;). Lysosomal membrane glycoproteins.Structure, biosynthesis, and intracellular trafficking. J Biol Chem 266, 21327–21330.
    [Google Scholar]
  11. García Véscovi, E., Ayala, Y. M., Di Cera, E. & Groisman, E. A. ( 1997;). Characterization of the bacterial sensor protein PhoQ: evidence for distinct binding sites for Mg2+ and Ca2+. J Biol Chem 272, 1440–1443.[CrossRef]
    [Google Scholar]
  12. Giguere, S., Hondalus, M. K., Yager, J. A., Darrah, P., Mosser, D. M. & Prescott, J. F. ( 1999;). Role of the 85-kilobase plasmid and plasmid-encoded virulence-associated protein A in intracellular survival and virulence of Rhodococcus equi. Infect Immun 67, 3548–3557.
    [Google Scholar]
  13. Gradon, J. D., Timpone, J. G. & Schnittman, S. M. ( 1992;). Emergence of unusual opportunistic pathogens in AIDS: a review. Clin Infect Dis 15, 134–157.[CrossRef]
    [Google Scholar]
  14. Hietala, S. K. & Ardans, A. A. ( 1987;). Interaction of Rhodococcus equi with phagocytic cells from R.equi-exposed and non-exposed foals. Vet Microbiol 14, 307–320.[CrossRef]
    [Google Scholar]
  15. Hondalus, M. K. & Mosser, D. M. ( 1994;). Survival and replication of Rhodococcus equi in macrophages. Infect Immun 62, 4167–4175.
    [Google Scholar]
  16. Jain, S., Bloom, B. R. & Hondalus, M. K. ( 2003;). Deletion of vapA encoding Virulence Associated Protein A attenuates the intracellular actinomycete Rhodococcus equi. Mol Microbiol 50, 115–128.[CrossRef]
    [Google Scholar]
  17. Luhrmann, A., Mauder, N., Sydor, T., Fernandez-Mora, E., Schulze-Luehrmann, J., Takai, S. & Haas, A. ( 2004;). Necrotic death of Rhodococcus equi-infected macrophages is regulated by virulence-associated plasmids. Infect Immun 72, 853–862.[CrossRef]
    [Google Scholar]
  18. Meijer, W. G. & Prescott, J. F. ( 2004;). Rhodococcus equi. Vet Res 35, 383–396.[CrossRef]
    [Google Scholar]
  19. Mills, S. D. & Finlay, B. B. ( 1998;). Isolation and characterization of Salmonella typhimurium and Yersinia pseudotuberculosis-containing phagosomes from infected mouse macrophages: Y.pseudotuberculosis traffics to terminal lysosomes where they are degraded. Eur J Cell Biol 77, 35–47.[CrossRef]
    [Google Scholar]
  20. Pizarro-Cerda, J., Moreno, E., Sanguedolce, V., Mege, J. L. & Gorvel, J. P. ( 1998;). Virulent Brucella abortus prevents lysosome fusion and is distributed within autophagosome-like compartments. Infect Immun 66, 2387–2392.
    [Google Scholar]
  21. Portnoy, D. A., Jacks, P. S., Hinrichs, D. J. ( 1988;). Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med 167, 1459–1471.[CrossRef]
    [Google Scholar]
  22. Prescott, J. F. ( 1991;). Rhodococcus equi: an animal and human pathogen. Clin Microbiol Rev 4, 20–34.
    [Google Scholar]
  23. Russell, D. G. ( 2000;). Where to stay inside the cell: a homesteader's guide to intracellular parasitism. In Cellular Microbiology, pp. 131–152. Edited by P. Cossart, P. Boquet, S. Normark & R. Rappuoli. Washington, DC: American Society for Microbiology.
  24. Sansonetti, P. J., Ryter, A., Clerc, P., Maurelli, A. T. & Mounier, J. ( 1986;). Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis. Infect Immun 51, 461–469.
    [Google Scholar]
  25. Sebghati, T. S., Engle, J. T. & Goldman, W. E. ( 2000;). Intracellular parasitism by Histoplasma capsulatum: fungal virulence and calcium dependence. Science 290, 1368–1372.[CrossRef]
    [Google Scholar]
  26. Sinai, A. P. ( 2000;). Life on the inside: microbial strategies for intracellular survival and persistence. In Persistent Bacterial Infections, pp. 31–51. Edited by J. P. Nataro, M. J. Blase & S. Cunningham-Rundles. Washington, DC: American Society for Microbiology.
  27. Sirisanthantana, T. & Supparatpinyo, K. ( 1996;). Pulmonary infection caused by Rhodococcus equi in patients with human immunodeficiency virus infection: report of 23 cases from Chiang Mai. J Infect Dis Antimicrob Agents 31, 95–99.
    [Google Scholar]
  28. Sturgill-Koszycki, S. & Swanson, M. S. ( 2000;). Legionella pneumophila replication vacuoles mature into acidic, endocytic organelles. J Exp Med 192, 1261–1272.[CrossRef]
    [Google Scholar]
  29. Takai, S. ( 1997;). Epidemiology of Rhodococcus equi infections: a review. Vet Microbiol 56, 167–176.[CrossRef]
    [Google Scholar]
  30. Takai, S., Sekizaki, T., Ozawa, T., Sugawara, T., Watanabe, Y. & Tsubaki, S. ( 1991;). Association between a large plasmid and 15- to 17-kilodalton antigens in virulent Rhodococcus equi. Infect Immun 59, 4056–4060.
    [Google Scholar]
  31. Takai, S., Iie, M., Watanabe, Y., Tsubaki, S. & Sekizaki, T. ( 1992;). Virulence-associated 15- to 17-kilodalton antigens in Rhodococcus equi: temperature-dependent expression and location of the antigens. Infect Immun 60, 2995–2997.
    [Google Scholar]
  32. Takai, S., Watanabe, Y., Ikeda, T., Ozawa, T., Matsukura, S., Tamada, Y., Tsubaki, S. & Sekizaki, T. ( 1993;). Virulence-associated plasmids in Rhodococcus equi. J Clin Microbiol 31, 1726–1729.
    [Google Scholar]
  33. Takai, S., Sasaki, Y., Ikeda, T., Uchida, Y., Tsubaki, S. & Sekizaki, T. ( 1994;). Virulence of Rhodococcus equi isolates from patients with and without AIDS. J Clin Microbiol 32, 457–460.
    [Google Scholar]
  34. Takai, S., Imai, Y., Fukunaga, N., Uchida, Y., Kamisawa, K., Sasaki, Y., Tsubaki, S. & Sekizaki, T. ( 1995;). Identification of virulence-associated antigens and plasmids in Rhodococcus equi from patients with AIDS. J Infect Dis 172, 1306–1311.[CrossRef]
    [Google Scholar]
  35. Takai, S., Fukunaga, N., Kamisawa, K., Imai, Y., Sasaki, Y. & Tsubaki, S. ( 1996;). Expression of virulence-associated antigens of Rhodococcus equi is regulated by temperature and pH. Microbiol Immunol 40, 591–594.[CrossRef]
    [Google Scholar]
  36. Takai, S., Hines, S. A., Sekizaki, T. & 10 other authors ( 2000;). DNA sequence and comparison of virulence plasmids from Rhodococcus equi ATCC 33701 and 103. Infect Immun 68, 6840–6847.[CrossRef]
    [Google Scholar]
  37. Takai, S., Tharavichitkul, P., Sasaki, C. & 11 other authors ( 2002;). Identification of virulence-associated antigens and plasmids in Rhodococcus equi from AIDS patients and prevalence of virulent R.equi in soil collected from domestic animal farms in Chiang Mai. Am J Trop Med Hyg 66, 52–55.
    [Google Scholar]
  38. Verville, T. D., Huycke, M. M., Greenfield, R. A., Fine, D. P., Kuhls, T. L. & Slater, L. N. ( 1994;). Rhodococcus equi infections of humans.12 cases and a review of the literature. Medicine 73, 119–132.
    [Google Scholar]
  39. Via, L. E., Fratti, R. A., McFalone, M., Pagan-Ramos, E., Deretic, D. & Deretic, V. ( 1998;). Effects of cytokines on mycobacterial phagosome maturation. J Cell Sci 111, 897–905.
    [Google Scholar]
  40. Zink, M. C., Yager, J. A., Prescott, J. F. & Fernando, M. A. ( 1987;). Electron microscopic investigation of intracellular events after ingestion of Rhodococcus equi by foal alveolar macrophages. Vet Microbiol 14, 295–305.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46086-0
Loading
/content/journal/jmm/10.1099/jmm.0.46086-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error