1887

Abstract

The REP-PCR (repetitive sequence-based PCR using repetitive extragenic palindromic primers) typing method and a modified PFGE method were applied to isolates of PCR ribotype 001 with the aim of comparing their performance as methods of subtyping this organism. Of 200 isolates from 60 hospitals tested by REP-PCR, eight subtypes were identified and labelled as REP-PCR subtypes 001–008. The predominant subtype, REP-PCR subtype 003, accounted for 47 % of the total. Fifty-two of the 200 isolates were analysed by a modified PFGE method and seven subtypes were identified, labelled as PF-A–PF-G. There was excellent correlation between REP-PCR subtypes and PFGE subtypes with both methods displaying broadly similar discriminatory powers. However, REP-PCR subtyping proved to be a much easier, cheaper and more rapid method suitable for application for routine subtyping of ribotype 001. Application of REP-PCR subtyping to UK isolates of PCR ribotype 001 from 60 different centres revealed a wide distribution of REP-PCR subtype 003 throughout England and Wales, with a regional clustering of REP-PCR subtype 001 around Northwest England and North Wales. Analysis of isolates from a single hospital over a 4-year period revealed a change in predominant subtype over time.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.45989-0
2005-06-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/54/6/JM540606.html?itemId=/content/journal/jmm/10.1099/jmm.0.45989-0&mimeType=html&fmt=ahah

References

  1. al-Barrak, A., Embil, J., Dyck, B., Olekson, K., Nicoll, D., Alfa, M. & Kabani, A. ( 1999;). An outbreak of toxin A negative, toxin B positive Clostridium difficile-associated diarrhea in a Canadian tertiary-care hospital. Can Commun Dis Rep 25, 65–69.
    [Google Scholar]
  2. Al-Saif, N. M., O'Neill, G. L., Magee, J. T., Brazier, J. S. & Duerden, B. I. ( 1998;). PCR-ribotyping and pyrolysis mass spectrometry fingerprinting of environmental and hospital isolates of Clostridium difficile. J Med Microbiol 47, 117–121.[CrossRef]
    [Google Scholar]
  3. Bartlett, J. G. ( 1994;). Clostridium difficile: history of its role as an enteric pathogen and the current state of knowledge about the organism. Clin Infect Dis 18 (Suppl. 4), S265–S272.[CrossRef]
    [Google Scholar]
  4. Brazier, J. S. ( 2001;). Typing of Clostridium difficile. Clin Microbiol Infect 7, 428–431.[CrossRef]
    [Google Scholar]
  5. Brazier, J. S. & Borriello, S. P. ( 2000;). Microbiology, epidemiology and diagnosis of Clostridium difficile infection. Curr Top Microbiol Immunol 250, 1–33.
    [Google Scholar]
  6. Cartmill, T. D., Panigrahi, H., Worsley, M. A., McCann, D. C., Nice, C. N. & Keith, E. ( 1994;). Management and control of a large outbreak of diarrhoea due to Clostridium difficile. J Hosp Infect 27, 1–15.[CrossRef]
    [Google Scholar]
  7. Clabots, C. R., Johnson, S., Olson, M. M., Peterson, L. R. & Gerding, D. N. ( 1992;). Acquisition of Clostridium difficile by hospitalized patients: evidence for colonized new admissions as a source of infection. J Infect Dis 166, 561–567.[CrossRef]
    [Google Scholar]
  8. Fawley, W. N., Freeman, J. & Wilcox, M. H. ( 2003;). Evidence to support the existence of subgroups within the UK epidemic Clostridium difficile strain (PCR ribotype 1). J Hosp Infect 54, 74–77.[CrossRef]
    [Google Scholar]
  9. Gal, M., Northey, G. & Brazier, J. S. ( 2005;). A modified pulsed-field gel electrophoresis (PFGE) protocol for subtyping previously non-PFGE typeable isolates of Clostridium difficile PCR ribotype 001. J Hosp Infect (in press).
  10. George, R. H., Symonds, J. M., Dimock, F., Brown, J. D., Arabi, Y., Shinagawa, N., Keighley, M. R., Alexander-Williams, J. & Burdon, D. W. ( 1978;). Identification of Clostridium difficile as a cause of pseudomembranous colitis. Br Med J 1, 695. 695.[CrossRef]
    [Google Scholar]
  11. Hahm, B. K., Maldonado, Y., Schreiber, E., Bhunia, A. K. & Nakatsu, C. H. ( 2003;). Subtyping of foodborne and environmental isolates of Escherichia coli by multiplex-PCR, rep-PCR, PFGE, ribotyping and AFLP. J Microbiol Methods 53, 387–399.[CrossRef]
    [Google Scholar]
  12. Hielm, S., Bjorkroth, J., Hyytia, E. & Korkeala, H. ( 1998;). Genomic analysis of Clostridium botulinum group II by pulsed-field gel electrophoresis. Appl Environ Microbiol 64, 703–708.
    [Google Scholar]
  13. Kato, H., Kato, N., Watanabe, K. & 7 other authors ( 2001;). Analysis of Clostridium difficile isolates from nosocomial outbreaks at three hospitals in diverse areas of Japan. J Clin Microbiol 39, 1391–1395.[CrossRef]
    [Google Scholar]
  14. Klaassen, C. H. W., van Haren, H. A. & Horrevorts, A. M. ( 2002;). Molecular fingerprinting of Clostridium difficile isolates: pulsed-field gel electrophoresis versus amplified fragment length polymorphism. J Clin Microbiol 40, 101–104.[CrossRef]
    [Google Scholar]
  15. Koeuth, T., Versalovic, J. & Lupski, J. R. ( 1995;). Differential subsequence conservation of interspersed repetitive Streptococcus pneumoniae BOX elements in diverse bacteria. Genome Res 5, 408–418.[CrossRef]
    [Google Scholar]
  16. Kristjansson, M., Samore, M. H., Gerding, D. N., DeGirolami, P. C., Bettin, K. M., Karchmer, A. W. & Arbeit, R. D. ( 1994;). Comparison of restriction endonuclease analysis, ribotyping, and pulsed-field gel electrophoresis for molecular differentiation of Clostridium difficile strains. J Clin Microbiol 32, 1963–1969.
    [Google Scholar]
  17. Lefresne, G., Latrille, E., Irlinger, F. & Grimont, P. A. D. ( 2003;). Repeatability and reproducibility of ribotyping and its computer interpretation. Res Microbiol 155, 154–161.
    [Google Scholar]
  18. Liu, P. Y.-F. & Wu, W.-L. ( 1997;). Use of different PCR-based DNA fingerprinting techniques and pulsed-field gel electrophoresis to investigate the epidemiology of Acinetobacter calcoaceticus-Acinetobacter baumannii complex. Diagn Microbiol Infect Dis 28, 19–28.[CrossRef]
    [Google Scholar]
  19. Mulvey, M. R., Chui, L., Ismail, J., Louie, L., Murphy, C., Chang, N., Alfa, M. & the Canadian Committee for the Standardization of Molecular Methods ( 2001;). Development of a Canadian standardized protocol for subtyping methicillin-resistant Staphylococcus aureus using pulsed-field gel electrophoresis. J Clin Microbiol 39, 3481–3485.[CrossRef]
    [Google Scholar]
  20. Rafferty, M. E., Baltch, A. L., Smith, R. P., Bopp, L. H., Rheal, C. & Tenover, F. C. ( 1998;). Comparison of restriction enzyme analysis, arbitrarily primed PCR, and protein profile analysis typing for epidemiologic investigation of an ongoing Clostridium difficile outbreak. J Clin Microbiol 36, 2957–2963.
    [Google Scholar]
  21. Rahmati, A., Gal, M., Northey, G. & Brazier, J. S. ( 2005;). Subtyping of Clostridium difficile polymerase chain reaction (PCR) ribotype 001 by repetitive extragenic palindromic PCR genomic fingerprinting. J Hosp Infect (in press) JHI-D-04-00100.
  22. Samore, M. H., Kristjansson, M., Venkataraman, L., DeGirolami, P. C. & Arbeit, R. D. ( 1995;). Comparison of arbitrarily-primed polymerase chain reaction, restriction enzyme analysis and pulsed-field gel electrophoresis for typing Clostridium difficile. J Microbiol Methods 25, 215–224.
    [Google Scholar]
  23. Sperner, B., Schalch, B., Eisgruber, H. & Stolle, A. ( 1999;). Short protocol for pulsed field gel electrophoresis of a variety of Clostridia species. FEMS Immunol Med Microbiol 24, 287–292.[CrossRef]
    [Google Scholar]
  24. Struelens, M. J., De Gheldre, Y. & Deplano, A. ( 1998;). Comparative and library epidemiological typing systems: outbreak investigations versus surveillance systems. Infect Control Hosp Epidemiol 19, 565–569.[CrossRef]
    [Google Scholar]
  25. Stubbs, S. L. J., Brazier, J. S., O'Neill, G. L. & Duerden, B. I. ( 1999;). PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol 37, 461–463.
    [Google Scholar]
  26. Tabaqchali, S. & Jumaa, P. ( 1995;). Diagnosis and management of Clostridium difficile infection. BMJ 310, 1375–1380.[CrossRef]
    [Google Scholar]
  27. Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P. A., Murray, B. E., Persing, D. H. & Swaminathan, B. ( 1995;). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33, 2233–2239.
    [Google Scholar]
  28. Verity, P., Wilcox, M. H., Fawley, W. & Parnell, P. ( 2001;). Prospective evaluation of environmental contamination by Clostridium difficile in isolation side rooms. J Hosp Infect 49, 204–209.[CrossRef]
    [Google Scholar]
  29. Versalovic, J., Koeuth, T. & Lupski, J. R. ( 1991;). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19, 6823–6831.[CrossRef]
    [Google Scholar]
  30. Weigel, R. M., Qiao, B., Teferedegne, B., Suh, D. K., Barber, D. A., Isaacson, R. E. & White, B. A. ( 2004;). Comparison of pulsed field gel electrophoresis and repetitive sequence polymerase chain reaction as genotyping methods for detection of genetic diversity and inferring transmission of Salmonella. Vet Microbiol 100, 205–217.[CrossRef]
    [Google Scholar]
  31. Wilcox, M. H., Cunniffe, J. G., Trundle, C. & Redpath, C. ( 1996;). Financial burden of hospital-acquired Clostridium difficile infection. J Hosp Infect 34, 23–30.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.45989-0
Loading
/content/journal/jmm/10.1099/jmm.0.45989-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error