Induction of inflammatory cytokines and nitric oxide in J774.2 cells and murine macrophages by lipoteichoic acid and related cell wall antigens from Free

Abstract

causes infections associated with medical devices including central venous catheters, orthopaedic prosthetic joints and artificial heart valves. This coagulase-negative staphylococcus produces a conventional cellular lipoteichoic acid (LTA) and also releases a short-glycerophosphate-chain-length form of LTA (previously termed lipid S) into the medium during growth. The relative pro-inflammatory activities of cellular and short-chain-length exocellular LTA were investigated in comparison with peptidoglycan and wall teichoic acid from and LPS from O111. The ability of these components to stimulate the production of pro-inflammatory cytokines [interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α] and nitric oxide was investigated in a murine macrophage-like cell line (J774.2), and in peritoneal and splenic macrophages. On a weight-for-weight basis the short-chain-length exocellular LTA was the most active of the products, stimulating significant amounts of each of the inflammatory cytokines and nitric oxide, although it was approximately 100-fold less active than LPS from . By comparison the full-chain-length cellular LTA and peptidoglycan were less active and the wall teichoic acid had no activity. As an exocellular product potentially released from biofilms, the short-chain-length exocellular LTA may act as the prime mediator of the host inflammatory response to device-related infection by this organism and act as the Gram-positive equivalent of LPS in Gram-negative sepsis. The understanding of the role of short-chain-length exocellular LTA in Gram-positive sepsis may lead to improved treatment strategies.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.45872-0
2005-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/54/4/JM540401.html?itemId=/content/journal/jmm/10.1099/jmm.0.45872-0&mimeType=html&fmt=ahah

References

  1. Archibald A. R., Baddiley J. 1968; The glycerol teichoic acid from walls of Staphylococcus epidermidis I2. Biochem J 110:583–588
    [Google Scholar]
  2. Bhakdi S., Klonisch P., Nuber P., Fischer W. 1991; Stimulation of monokine production by lipoteichoic acids. Infect Immun 59:4614–4620
    [Google Scholar]
  3. Boyce J. M. 1996; Epidemiology and prevention of nosocomial infections. In The Staphylococci in Human Disease pp 309–330 Edited by Crossley K., Archer G. New York: Churchill Livingstone;
    [Google Scholar]
  4. Bucher M., Ittner K. P., Zimmermann M., Wolf K., Hobbhahn J., Kurtz A. 1997; Nitric oxide synthase isoform III gene expression in rat liver is up-regulated by lipopolysaccharide and lipoteichoic acid. FEBS Lett 412:511–514 [CrossRef]
    [Google Scholar]
  5. Cleveland M. G., Gorham J. D., Murphy T. L., Tuomanen E., Murphy K. M. 1996; Lipoteichoic acid preparations of Gram-positive bacteria induce interleukin-12 through a CD14-dependent pathway. Infect Immun 64:1906–1912
    [Google Scholar]
  6. Coley J., Duckworth M., Baddiley J. 1972; The occurrence of lipoteichoic acids in the membranes of Gram-positive bacteria. J Gen Microbiol 73:587–591 [CrossRef]
    [Google Scholar]
  7. Connaughton M., Lang S., Tebbs S. E., Littler W. A., Lambert P. A., Elliott T. S. J. 2001; Rapid serodiagnosis of Gram-positive bacterial endocarditis. J Infect 42:140–144 [CrossRef]
    [Google Scholar]
  8. Deininger S., Stadelmaier A., von Aulock S., Morath R. R., Hartung T. 2003; Definition of structural prerequisites for lipoteichoic acid-inducible cytokine induction by synthetic derivatives. J Immunol 170:4134–4138 [CrossRef]
    [Google Scholar]
  9. De Kimpe S. J., Hunter M. L., Bryant C. E., Thiemermann C., Vane J. R. 1995a; Delayed circulatory failure due to the induction of nitric oxide synthase by lipoteichoic acid from Staphylococcus aureus . Br J Pharmacol 114:1317–1323 [CrossRef]
    [Google Scholar]
  10. De Kimpe S. J., Kengatharan K. M., Thiemermann C., Vane J. R. 1995b; The cell wall components peptidoglycan and lipoteichoic acid from Staphylococcus aureus act in synergy to cause shock and multiple organ failure. Proc Natl Acad Sci U S A 92:10359–10363 [CrossRef]
    [Google Scholar]
  11. Elliott T. S. J., Tebbs S. E., Moss H. A., Worthington T., Spare M. K., Faroqui M. H., Lambert P. A. 2000; A novel serological test for the diagnosis of central venous catheter-associated sepsis. J Infect 40:262–266 [CrossRef]
    [Google Scholar]
  12. Farrell A. M., Foster T. J., Holland K. T. 1993; Molecular analysis and expression of the lipase of Staphylococcus epidermidis . J Gen Microbiol 139:267–277 [CrossRef]
    [Google Scholar]
  13. Fischer W. 1993; Molecular analysis of lipid macroamphiphiles by hydrophobic interaction chromatography, exemplified with lipoteichoic acids. Anal Biochem 208:49–56 [CrossRef]
    [Google Scholar]
  14. Fischer W. 1994; Lipoteichoic acid and lipids in the membrane of Staphylococcus aureus . Med Microbiol Immunol (Berl) 183:61–76 [CrossRef]
    [Google Scholar]
  15. Ginsburg I. 2002; Role of lipoteichoic acid in infection and inflammation. Lancet Infect Dis 2:171–179 [CrossRef]
    [Google Scholar]
  16. Hattor Y., Kasai K., Akimoto K., Thiemermann C. 1997; Induction of NO synthesis by lipoteichoic acid from Staphylococcus aureus in J774 macrophages: involvement of a CD14-dependent pathway. Biochem Biophys Res Commun 233:375–379 [CrossRef]
    [Google Scholar]
  17. Hoshino K., Takeuchi O., Kawai T., Sanjo H., Ogawa T., Takeda Y., Takeda K., Akira S. 1999; Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162:3749–3752
    [Google Scholar]
  18. Hussain M., Hastings J. G. M., White P. J. 1991a; A chemically defined medium for slime production by coagulase-negative staphylococci. J Med Microbiol 34:143–147 [CrossRef]
    [Google Scholar]
  19. Hussain M., Hastings J. G. M., White P. J. 1991b; Isolation and composition of the extracellular slime made by coagulase-negative staphylococci in a chemically defined medium. J Infect Dis 163:534–541 [CrossRef]
    [Google Scholar]
  20. Hussain M., Hastings J. G. M., White P. J. 1992; Comparison of cell-wall teichoic acid with high-molecular-weight extracellular slime material from Staphylococcus epidermidis . J Med Microbiol 37:368–375 [CrossRef]
    [Google Scholar]
  21. Kengatharan K. M., de Kimpe S. J., Robson C., Foster S. J., Thiemermann C. 1998; Mechanism of Gram-positive shock: identification of peptidoglycan and lipoteichoic acid moieties essential in the induction of nitric oxide synthase, shock, and multiple organ failure. J Exp Med 188:305–315 [CrossRef]
    [Google Scholar]
  22. Lambe D. W., Ferguson K. P., Keplinger J. L., Gemmell C. G., Kalbfleisch J. H. 1990; Pathogenicity of Staphylococcus lugdunensis , Staphylococcus schleiferi , and three other coagulase-negative staphylococci in a mouse model and possible virulence factors. Can J Microbiol 36:455–463 [CrossRef]
    [Google Scholar]
  23. Lambert P. A., van Maurik A., Parvatham S., Akhtar Z., Fraise A. P., Krikler S. J. 1996; Potential of exocellular carbohydrate antigens of Staphylococcus epidermidis in the serodiagnosis of orthopaedic prosthetic infection. J Med Microbiol 44:355–361 [CrossRef]
    [Google Scholar]
  24. Lambert P. A., Worthington T., Tebbs S. E., Elliott T. S. J. 2000; Lipid S, a novel Staphylococcus epidermidis exocellular antigen with potential for the serodiagnosis of infections. FEMS Immunol Med Microbiol 29:195–202 [CrossRef]
    [Google Scholar]
  25. Molnàr C., Hevessy Z., Rozgonyi F., Gemmell C. G. 1994; Pathogenicity and virulence of coagulase-negative staphylococci in relation to adherence, hydrophobicity, and toxin production in vitro. J Clin Pathol 47:743–748 [CrossRef]
    [Google Scholar]
  26. Morath S., Geyer A., Hartung T. 2001; Structure-function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus . J Exp Med 193:393–398 [CrossRef]
    [Google Scholar]
  27. Morath S., Stadelmaier A., Geyer A., Schmidt R. R., Hartung T. 2002; Synthetic lipoteichoic acid from Staphylococcus aureus is a potent stimulus of cytokine release. J Exp Med 195:1635–1640 [CrossRef]
    [Google Scholar]
  28. Neuhaus F. C., Baddiley J. 2003; A continuum of anionic charge: structures and functions of d-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol Biol Rev 67:686–723 [CrossRef]
    [Google Scholar]
  29. Ohta K., Komatsuzawa H., Sugai M., Suginaka H. 1998; Zymographic characterization of Staphylococcus aureus cell wall. Microbiol Immunol 42:231–235 [CrossRef]
    [Google Scholar]
  30. Paulsson M., Ljungh A., Wadström T. 1992; Rapid identification of fibronectin, vitronectin, laminin, and collagen cell surface binding proteins on coagulase-negative staphylococci by particle agglutination assays. J Clin Microbiol 30:2006–2012
    [Google Scholar]
  31. Peters G., Schumacher-Perdreau F. 1994; Extracellular slime substance as a virulence determinant in Staphylococcus epidermidis . In Molecular Pathogenesis of Surgical Infections pp 109–116 Edited by Wadström T., Holder I., Kronvall G. Deerfield Beach: Gustav Fischer Verlag;
    [Google Scholar]
  32. Poxton I. R., Hancock I. C. 1988; Separation and purification of surface components. In Bacterial Cell Surface Techniques pp 67–135 Chichester: Wiley;
    [Google Scholar]
  33. Rafiq M., Worthington T., Tebbs S. E., Treacy R. B. C., Dias R., Lambert P. A., Elliott T. S. J. 2000; Serological detection of Gram-positive bacterial infection around protheses. J Bone Joint Surg Br 82:B1156–1161
    [Google Scholar]
  34. Sadovskaya I., Vinogradov E., Li J., Jabbouri S. 2004; Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus epidermidis RP62A, a reference biofilm-positive strain. Carbohydr Res 339:1467–1473 [CrossRef]
    [Google Scholar]
  35. Schroder N. W., Morath S., Alexander C., Hamann L., Hartung T., Zahringer U., Gobel U. B., Weber J. R., Schumann R. R. 2003; Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem 278:15587–15594 [CrossRef]
    [Google Scholar]
  36. Schwandner R., Dziarski R., Wesche W., Rothe M., Kirschning C. J. 1999; Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 274:17406–17409 [CrossRef]
    [Google Scholar]
  37. Thiemermann C. 2002; Interactions between lipoteichoic acid and peptidoglycan from Staphylococcus aureus : a structural and functional analysis. Microbes Infect 4:927–935 [CrossRef]
    [Google Scholar]
  38. Van Langevelde P., Ravensbergen E., Grashoff P., Beekhuizen H., Groeneveld P. H., van Dissel J. T. 1999; Antibiotic-induced cell wall fragments of Staphylococcus aureus increase endothelial chemokine secretion and adhesiveness for granulocytes. Antimicrob Agents Chemother 43:2984–2989
    [Google Scholar]
  39. Wang J. E., Dahle M. K., McDonald M., Foster S. J., Aasen A. O., Thiemermann C. 2003; Peptidoglycan and lipoteichoic acid in Gram-positive bacterial sepsis: receptors, signal transduction, biological effects, and synergism. Shock 20:402–414 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.45872-0
Loading
/content/journal/jmm/10.1099/jmm.0.45872-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed