1887

Abstract

The ability of to produce mutacins, combined with the production of other virulence factors such as lactic acid, may contribute to the pathogenesis of this bacterium. In the present study, the detection of genes encoding mutacin types I/III, II and IV was performed by PCR with specific primers to each type in a total of 63 genotypes isolated from caries-active and caries-free individuals. In the caries-free group, PCR screening for mutacin IV revealed that 31.8 % of strains were positive for this mutacin. PCR for the other three mutacins tested (I/III and II) did not yield amplicons in any strains in this group. The PCR with primers of mutacin IV showed 68.3 % positive genotypes in the caries-active group, on the other hand, the amplicons of mutacins I/III revealed 41.5 % positive strains that carried these genes. The chi square test showed significant differences in the number of positive strains to mutacin IV when comparing the caries-free and caries-active genotypes of ( = 0.01). All tested strains were negative by PCR for mutacin II. The low frequencies of detection of some mutacin genes suggest the existence of high diversity and polymorphism in the production of genetic determinants of mutacin-like substances. In addition, the production of a wide spectrum of mutacins can play an important biological role in colonization by S strains, mainly in the niche of high-complexity microbial communities.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.45870-0
2005-06-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/54/6/JM540614.html?itemId=/content/journal/jmm/10.1099/jmm.0.45870-0&mimeType=html&fmt=ahah

References

  1. Alaluusua, S., Mattö, J., Grönroos, L., Innila, S., Torkko, H., Asikainen, S., Jousimies-Somer, H. & Saarela, M. ( 1996;). Oral colonization by more than one clonal type of mutans streptococcus in children with nursing-bottle dental caries. Arch Oral Biol 41, 167–173.[CrossRef]
    [Google Scholar]
  2. Balakrishnan, M., Simmonds, R. S., Kilian, M. & Tagg, J. R. ( 2002;). Different bacteriocin activities of Streptococcus mutans reflect distinct phylogenetic lineages. J Med Microbiol 51, 941–948.
    [Google Scholar]
  3. Becker, M. R., Paster, B. J., Leys, E. J., Moeschberger, M. L., Kenyon, S. G., Galvin, J. L., Boches, S. K., Dewhirst, F. E. & Griffen, A. L. ( 2002;). Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 40, 1001–1009.[CrossRef]
    [Google Scholar]
  4. Berkowitz, R. J. & Jordan, H. V. ( 1975;). Similarity of bacteriocins of Streptococcus mutans from mother and infant. Arch Oral Biol 20, 725–730.[CrossRef]
    [Google Scholar]
  5. Carlsson, J. ( 1989;). Microbial aspects of frequent intake of products with high sugar concentrations. Scand J Dent Res 97, 110–114.
    [Google Scholar]
  6. Caufield, P. W., Childers, N. K., Allen, D. N. & Hansen, J. B. ( 1985;). Distinct bacteriocin groups correlate with different groups of Streptococcus mutans plasmids. Infect Immun 48, 51–56.
    [Google Scholar]
  7. Chan, W. C., Dodd, H. M., Horn, N., Maclean, K., Lian, L. Y., Bycroft, B. W., Gasson, M. J. & Roberts, G. C. K. ( 1996;). Structure-activity relationships in the peptide antibiotic nisin: role of dehydroalanine 5. Appl Environ Microbiol 62, 2966–2969.
    [Google Scholar]
  8. Delisle, A. L. ( 1976;). Activity of two Streptococcus mutans bacteriocins in the presence of saliva, levan and dextran. Infect Immun 13, 619–626.
    [Google Scholar]
  9. Fukushima, H., Kelstrup, J., Fukushima, S., Umemoto, T., Kaibori, A. & Sagawa, H. ( 1985;). Characterization and mode of action of a purified bacteriocin from the oral bacterium Streptococcus mutans RM-10. Arch Oral Biol 30, 229–234.[CrossRef]
    [Google Scholar]
  10. Hamada, S. & Ooshima, T. ( 1975;). Inhibitory spectrum of a bacteriocinlike substance (mutacin) produced by some strains of Streptococcus mutans. J Dent Res 54, 140–145.[CrossRef]
    [Google Scholar]
  11. Hillman, J. D., Dzuback, A. L. & Andrews, S. W. ( 1987;). Colonization of the human oral cavity by a Streptococcus mutans mutant producing increased bacteriocin. J Dent Res 66, 1092–1094.[CrossRef]
    [Google Scholar]
  12. Kamiya, R. U., Napimoga, M. H., Rosa, R. T., Höfling, J. F. & Gonçalves, R. B. ( 2005;). Mutacins production in Streptococcus mutans genotypes isolated from caries-active and caries-free individuals. Oral Microbiol Immunol 20, 20–24.[CrossRef]
    [Google Scholar]
  13. Klein, M. I., Flório, F. M., Pereira, A. C., Höfling, J. F. & Gonçalves, R. B. ( 2004;). Transmission, diversity, and stability of Streptococcus mutans and Streptococcus sobrinus genotypes: a longitudinal study in Brazilian nursery children. J Clin Microbiol 42, 4620–4626.[CrossRef]
    [Google Scholar]
  14. Loesche, W. J. ( 1986;). Role of Streptococcus mutans in human dental decay. Microbiol Rev 50, 353–380.
    [Google Scholar]
  15. Longo, P. L., Mattos-Graner, R. O. & Mayer, M. P. A. ( 2003;). Determination of mutacin activity and detection of mutA genes in Streptococcus mutans genotypes from caries-free and caries-active children. Oral Microbiol Immunol 18, 144–149.[CrossRef]
    [Google Scholar]
  16. Mattos-Graner, R. O., Smith, D. J., King, W. F. & Mayer, M. P. ( 2000;). Water-insoluble glucan synthesis by mutans streptococcal strains correlates with caries incidence in 12- to 30-month-old children. J Dent Res 79, 1371–1377.[CrossRef]
    [Google Scholar]
  17. Mulders, J. W., Boerrigter, I. J., Rollema, H. S., Siezen, R. J. & de Vos, W. M. ( 1991;). Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur J Biochem 201, 581–584.[CrossRef]
    [Google Scholar]
  18. Napimoga, M. H., Kamiya, R. U., Rosa, R. T., Rosa, E. A. R., Höfling, J. F., Mattos-Graner, R. O. & Gonçalves, R. B. ( 2004;). Genotypic diversity and virulence traits of Streptococcus mutans in caries-free and caries-active individuals. J Med Microbiol 53, 697–703.[CrossRef]
    [Google Scholar]
  19. Novak, J., Caufield, P. W., Miller, E. J. ( 1994;). Isolation and biochemical characterization of a novel lantibiotic mutacin from S.mutans. J Bacteriol 176, 4316–4320.
    [Google Scholar]
  20. Paddick, J. S., Brailsford, S. R., Kidd, E. A. M., Gilbert, S. C., Clark, D. T., Alam, S., Killick, Z. J. & Beighton, D. ( 2003;). Effect of the environment on genotypic diversity of Actinomyces naeslundii and Streptococcus oralis in the oral biofilm. Appl Environ Microbiol 69, 6475–6480.[CrossRef]
    [Google Scholar]
  21. Parrot, M., Caufield, P. W. & Lavoie, M. C. ( 1990;). Preliminary characterization of four bacteriocins from Streptococcus mutans. Can J Microbiol 36, 123–130.[CrossRef]
    [Google Scholar]
  22. Qi, F., Chen, P. & Caufield, P. W. ( 1999a;). Functional analyses of the promoters in the lantibiotic mutacin II biosynthetic locus in Streptococcus mutans. Appl Environ Microbiol 65, 652–658.
    [Google Scholar]
  23. Qi, F., Chen, P. & Caufield, P. W. ( 1999b;). Purification of mutacin III from group III Streptococcus mutans UA787 and genetic analyses of mutacin III biosynthesis genes. Appl Environ Microbiol 65, 3880–3887.
    [Google Scholar]
  24. Qi, F., Chen, P. & Caufield, P. W. ( 2001;). The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl Environ Microbiol 67, 15–21.[CrossRef]
    [Google Scholar]
  25. Rollema, H. S., Kuipers, O. P., Both, P., de Vos, W. M. & Siezen, R. J. ( 1995;). Improvement of solubility and stability of the antimicrobial peptide nisin by protein engineering. Appl Environ Microbiol 61, 2873–2878.
    [Google Scholar]
  26. Saarela, M., Hannula, J., Mattö, J., Asikainen, S. & Alaluusua, S. ( 1996;). Typing of mutans streptococci by arbitrarily primed polymerase chain reaction. Arch Oral Biol 41, 821–826.[CrossRef]
    [Google Scholar]
  27. van Palenstein Helderman, W. H., Matee, M. I., van der Hoeven, J. S. & Mikx, F. H. ( 1996;). Cariogenicity depends more on diet than the prevailing mutans streptococcal species. J Dent Res 75, 535–545.[CrossRef]
    [Google Scholar]
  28. Welsh, J. & McClelland, M. ( 1990;). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18, 7213–7218.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.45870-0
Loading
/content/journal/jmm/10.1099/jmm.0.45870-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error