1887

Abstract

The highly virulent bacterium is well adapted to the intracellular habitat but the mechanisms behind its intracellular survival have been elusive. Recently, it was shown that the bacterium is capable of escaping from the phagosome of human and mouse monocytic cells. Here it is shown that this escape is affected by gamma interferon (IFN-γ) treatment of mouse peritoneal exudate cells since in treated cells the proportion that escaped was significantly lower (80 %) than in untreated cells (97 %) as determined by transmission electron microscopy. By contrast, < 1 % of mutant bacteria lacking expression of a 23 kDa protein denoted IglC were able to escape from the phagosome. Infection with the strain complemented with the gene resulted in 60 % of the bacteria escaping from the phagosome. Whereas IFN-γ treatment conferred a static effect on intracellular wild-type bacteria, the treatment had a bactericidal effect on the strain. The results show that the activation status of infected cells affects the escape of from the phagosome. An even more profound effect on this escape is related to expression of IglC by . Its absence rendered the mutant bacteria incapable of escaping from the phagosome and of multiplying intracellularly.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.45685-0
2004-10-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/10/JM531002.html?itemId=/content/journal/jmm/10.1099/jmm.0.45685-0&mimeType=html&fmt=ahah

References

  1. Abd, H., Johansson, T., Golovliov, I., Sandstrom, G. & Forsman, M. ( 2003;). Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl Environ Microbiol 69, 600–606.[CrossRef]
    [Google Scholar]
  2. Anderson, R. & Bhatti, A. R. ( 1986;). Fatty acid distribution in the phospholipids of Francisella tularensis. Lipids 21, 669–671.[CrossRef]
    [Google Scholar]
  3. Anthony, L. S. D., Burke, R. D. & Nano, F. E. ( 1991;). Growth of Francisella spp.in rodent macrophages. Infect Immun 59, 3291–3296.
    [Google Scholar]
  4. Anthony, L. S., Morrissey, P. J. & Nano, F. E. ( 1992;). Growth inhibition of Francisella tularensis live vaccine strain by IFN-gamma-activated macrophages is mediated by reactive nitrogen intermediates derived from l-arginine metabolism. J Immunol 148, 1829–1834.
    [Google Scholar]
  5. Beatty, W. L., Rhoades, E. R., Ullrich, H. J., Chatterjee, D., Heuser, J. E. & Russell, D. G. ( 2000;). Trafficking and release of mycobacterial lipids from infected macrophages. Traffic 1, 235–247.[CrossRef]
    [Google Scholar]
  6. Bligh, E. & Dyer, W. ( 1959;). A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37, 911–917.[CrossRef]
    [Google Scholar]
  7. Clemens, D. L., Lee, B. Y. & Horwitz, M. A. ( 2004;). Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect Immun 72, 3204–3217.[CrossRef]
    [Google Scholar]
  8. Dixon, T. C., Fadl, A. A., Koehler, T. M., Swanson, J. A. & Hanna, P. C. ( 2000;). Early Bacillus anthracis-macrophage interactions: intracellular survival and escape. Cell Microbiol 2, 453–463.[CrossRef]
    [Google Scholar]
  9. Elkins, K. L., Rhinehart-Jones, T., Nacy, C. A., Winegar, R. K. & Fortier, A. H. ( 1993;). T-cell-independent resistance to infection and generation of immunity to Francisella tularensis. Infect Immun 61, 823–829.
    [Google Scholar]
  10. Fortier, A. H., Polsinelli, T., Green, S. J. & Nacy, C. A. ( 1992;). Activation of macrophages for destruction of Francisella tularensis: identification of cytokines, effector cells, and effector molecules. Infect Immun 60, 817–825.
    [Google Scholar]
  11. Goebel, W. & Kuhn, M. ( 2000;). Bacterial replication in the host cell cytosol. Curr Opin Microbiol 3, 49–53.[CrossRef]
    [Google Scholar]
  12. Golovliov, I., Ericsson, M., Sandström, G., Tärnvik, A. & Sjöstedt, A. ( 1997;). Identification of proteins of Francisella tularensis induced during growth in macrophages and cloning of the gene encoding a prominently induced 23-kilodalton protein. Infect Immun 65, 2183–2189.
    [Google Scholar]
  13. Golovliov, I., Baranov, V., Krocova, Z., Kovarova, H. & Sjöstedt, A. ( 2003a;). An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infect Immun 71, 5940–5950.[CrossRef]
    [Google Scholar]
  14. Golovliov, I., Sjöstedt, A., Mokrievich, A. & Pavlov, V. ( 2003b;). A method for allelic replacement in Francisella tularensis. FEMS Microbiol Lett 222, 273–280.[CrossRef]
    [Google Scholar]
  15. Klichko, V. I., Miller, J., Wu, A., Popov, S. G. & Alibek, K. ( 2003;). Anaerobic induction of Bacillus anthracis hemolytic activity. Biochem Biophys Res Commun 303, 855–862.[CrossRef]
    [Google Scholar]
  16. Lai, X. H., Wang, S. Y., Edebro, H. & Sjostedt, A. ( 2003;). Francisella strains express hemolysins of distinct characteristics. FEMS Microbiol Lett 224, 91–95.[CrossRef]
    [Google Scholar]
  17. Lauriano, C. M., Barker, J. R., Yoon, S. S., Nano, F. E., Arulanandam, B. P., Hassett, D. J. & Klose, K. E. ( 2004;). MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proc Natl Acad Sci U S A 101, 4246–4249.[CrossRef]
    [Google Scholar]
  18. Leiby, D. A., Fortier, A. H., Crawford, R. M., Schreiber, R. D. & Nacy, C. A. ( 1992;). In vivo modulation of the murine immune response to Francisella tularensis LVS by administration of anticytokine antibodies. Infect Immun 60, 84–89.
    [Google Scholar]
  19. Myers, J. T., Tsang, A. W. & Swanson, J. A. ( 2003;). Localized reactive oxygen and nitrogen intermediates inhibit escape of Listeria monocytogenes from vacuoles in activated macrophages. J Immunol 171, 5447–5453.[CrossRef]
    [Google Scholar]
  20. Pavlov, V. M., Mokreivich, A. N. & Volkovoy, K. ( 1996;). Cryptic plasmid pFNL10 from Francisella novicida-like F6168: the base of plasmid vectors for Francisella tularensis. FEMS Immunol Med Microbiol 13, 253–256.[CrossRef]
    [Google Scholar]
  21. Portnoy, D. A., Auerbuch, V. & Glomski, I. J. ( 2002;). The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J Cell Biol 158, 409–414.[CrossRef]
    [Google Scholar]
  22. Prada-Delgado, A., Carrasco-Marin, E., Bokoch, G. M. & Alvarez-Dominguez, C. ( 2001;). Interferon-gamma listericidal action is mediated by novel Rab5a functions at the phagosomal environment. J Biol Chem 276, 19059–19065.[CrossRef]
    [Google Scholar]
  23. Prior, R. G., Klasson, L., Larsson, P. & 9 other authors ( 2001;). Preliminary analysis and annotation of the partial genome sequence of Francisella tularensis strain Schu 4. J Appl Microbiol 91, 614–620.[CrossRef]
    [Google Scholar]
  24. Shtrichman, R. & Samuel, C. E. ( 2001;). The role of gamma interferon in antimicrobial immunity. Curr Opin Microbiol 4, 251–259.[CrossRef]
    [Google Scholar]
  25. Sjöstedt, A., North, R. J. & Conlan, J. W. ( 1996;). The requirement of tumour necrosis factor-alpha and interferon-gamma for the expression of protective immunity to secondary murine tularaemia depends on the size of the challenge inoculum. Microbiology 142, 1369–1374.[CrossRef]
    [Google Scholar]
  26. Somerville, J. E., Jr, Cassiano, L., Bainbridge, B., Cunningham, M. D. & Darveau, R. P. ( 1996;). A novel Escherichia coli lipid A mutant that produces an antiinflammatory lipopolysaccharide. J Clin Invest 97, 359–365.[CrossRef]
    [Google Scholar]
  27. Tärnvik, A. ( 1989;). Nature of protective immunity to Francisella tularensis. Rev Infect Dis 11, 440–451.[CrossRef]
    [Google Scholar]
  28. Telepnev, M., Golovliov, I., Grundström, T., Tärnvik, A. & Sjöstedt, A. ( 2003;). Francisella tularensis inhibits Toll-like receptor-mediated activation of intracellular signalling and secretion of TNF-alpha and IL-1 from murine macrophages. Cell Microbiol 5, 41–51.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.45685-0
Loading
/content/journal/jmm/10.1099/jmm.0.45685-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error