1887

Abstract

Recent studies have shown that strains with variant toxins and those with resistance to macrolide–lincosamide–streptogramin B (MLSB) are increasingly causing severe disease and outbreaks in hospital settings. Here, the pathogenicity locus (PaLoc), the acquisition of binary toxin, and the genotypic and phenotypic characteristics of antibiotic resistance of 74 clinical strains isolated from symptomatic patients in Italy during different time periods were studied. These strains were found to belong to two different lineages, and those isolated before 1991 were genetically unrelated to the more recent strains. The majority of recent strains showed variations in toxin genes and in the toxin negative regulator () and had the binary toxin. In 62 % of them, variations in and the presence of the binary toxin were associated. Five classes of susceptibility/resistance pattern (EC-a to -e) for erythromycin and clindamycin were identified in all strains studied. Most of the recent isolates belonged to EC-d and EC-e and, although erythromycin-resistant , did not harbour the commonly associated determinant. Interestingly, two strains of the EC-d class were resistant to clindamycin only after induction with subinhibitory concentrations of the antibiotic. A decrease in tetracycline and chloramphenicol MIC values was also observed in the recently isolated strains, associated with less frequent detection of the and genes. Two -positive strains were resistant only after induction with subinhibitory concentrations of the antibiotic. The acquisition of the binary toxin, the possible increase in toxin production due to a mutated negative regulator and a decrease in the fitness cost as a result of lower levels of antibiotic resistance or other mechanisms may have led to the successful establishment of these new phenotypes, with potentially serious clinical implications.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.45682-0
2004-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/11/JM531113.html?itemId=/content/journal/jmm/10.1099/jmm.0.45682-0&mimeType=html&fmt=ahah

References

  1. Ackermann G., Degner A., Cohen S. H., Silva J. Jr, Rodloff A. C. 2003; Prevalence and association of macrolide-lincosamide-streptogramin B (MLSB) resistance with resistance to moxifloxacin in Clostridium difficile . J Antimicrob Chemother 51:599–603 [CrossRef]
    [Google Scholar]
  2. Alfa M. J., Kabani A., Lyerly D. & 7 other authors; 2000; Characterization of a toxin A-negative, toxin B-positive strain of Clostridium difficile responsible for a nosocomial outbreak of Clostridium difficile -associated diarrhea. J Clin Microbiol 38:2706–2714
    [Google Scholar]
  3. Andersson D. I., Levin B. R. 1999; The biological cost of antibiotic resistance. Curr Opin Microbiol 2:489–493 [CrossRef]
    [Google Scholar]
  4. Barbut F., Decre D., Burghoffer B. & 8 other authors; 1999; Antimicrobial susceptibilities and serogroups of clinical strains of Clostridium difficile isolated in France in 1991 and 1997. Antimicrob Agents Chemother 43:2607–2611
    [Google Scholar]
  5. Barbut F., Lalande V., Burghoffer B., Thien H. V., Grimprel E., Petit J. C. 2002; Prevalence and genetic characterization of toxin A variant strains of Clostridium difficile among adults and children with diarrhea in France. J Clin Microbiol 40:2079–2083 [CrossRef]
    [Google Scholar]
  6. Berryman D. I., Rood J. I. 1989; Cloning and hybridization analysis of erm P, a macrolide-lincosamide-streptogramin B resistance determinant from Clostridium perfringens . Antimicrob Agents Chemother 33:1346–1353 [CrossRef]
    [Google Scholar]
  7. Bjorkman J., Andersson D. I. 2000; The cost of antibiotic resistance from a bacterial perspective. Drug Resist Updates 3:237–245 [CrossRef]
    [Google Scholar]
  8. Braun V., Hundsberger T., Leukel P., Sauerborn M., von Eichel-Streiber C. 1996; Definition of the single integration site of the pathogenicity locus in Clostridium difficile . Gene 181:29–38 [CrossRef]
    [Google Scholar]
  9. Chung W. O., Werckenthin C., Schwarz S., Roberts M. C. 1999; Host range of the ermF rRNA methylase gene in bacteria of human and animal origin. J Antimicrob Chemother 43:5–14
    [Google Scholar]
  10. Delmee M., Avesani V. 1988; Correlation between serogroup and susceptibility to chloramphenicol, clindamycin, erythromycin, rifampicin and tetracycline among 308 isolates of Clostridium difficile . J Antimicrob Chemother 22:325–331 [CrossRef]
    [Google Scholar]
  11. Doherty N., Trzcinski K., Pickerill P., Zawadzki P., Dowson C. G. 2000; Genetic diversity of the tet (M) gene in tetracycline-resistant clonal lineages of Streptococcus pneumoniae . Antimicrob Agents Chemother 44:2979–2984 [CrossRef]
    [Google Scholar]
  12. Farrow K. A., Lyras D., Rood J. I. 2000; The macrolide-lincosamide-streptogramin B resistance determinant from Clostridium difficile 630 contains two erm (B) genes. Antimicrob Agents Chemother 44:411–413 [CrossRef]
    [Google Scholar]
  13. Farrow K. A., Lyras D., Rood J. I. 2001; Genomic analysis of the erythromycin resistance element Tn 5398 from Clostridium difficile . Microbiology 147:2717–2728
    [Google Scholar]
  14. Giovanetti E., Montanari M. P., Mingoia M., Varaldo P. E. 1999; Phenotypes and genotypes of erythromycin-resistant Streptococcus pyogenes strains in Italy and heterogeneity of inducibly resistant strains. Antimicrob Agents Chemother 43:1935–1940
    [Google Scholar]
  15. Hammond G. A., Johnson J. L. 1995; The toxigenic element of Clostridium difficile strain VPI 10463. Microb Pathog 19:203–213 [CrossRef]
    [Google Scholar]
  16. Hammond G. A., Lyerly D. M., Johnson J. L. 1997; Transcriptional analysis of the toxigenic element of Clostridium difficile . Microb Pathog 22:143–154 [CrossRef]
    [Google Scholar]
  17. Hundsberger T., Braun V., Weidmann M., Leukel P., Sauerborn M., von Eichel-Streiber C. 1997; Transcription analysis of the genes tcd A–E of the pathogenicity locus of Clostridium difficile. Eur J Biochem 244:735–742 [CrossRef]
    [Google Scholar]
  18. Johanesen P. A., Lyras D., Bannam T. L., Rood J. I. 2001; Transcriptional analysis of the tet (P) operon from Clostridium perfringens . J Bacteriol 183:7110–7119 [CrossRef]
    [Google Scholar]
  19. Johnson S., Samore M. H., Farrow K. A. & 9 other authors; 1999; Epidemics of diarrhea caused by a clindamycin-resistant strain of Clostridium difficile in four hospitals. N Engl J Med 341:1645–1651 [CrossRef]
    [Google Scholar]
  20. Kostman J. R., Edlind T. D., LiPuma J. J., Stull T. L. 1992; Molecular epidemiology of Pseudomonas cepacia determined by polymerase chain reaction ribotyping. J Clin Microbiol 30:2084–2087
    [Google Scholar]
  21. Luna V. A., Cousin S. J. R., Whittington W. L. H., Roberts M. C. 2000; Identification of the conjugative mef gene in clinical Acinetobacter junii and Neisseria gonorrhoeae isolates. Antimicrob Agents Chemother 44:2503–2506 [CrossRef]
    [Google Scholar]
  22. Marchese A., Ramirez M., Schito G. C., Tomasz A. 1998; Molecular epidemiology of penicillin-resistant Streptococcus pneumoniae isolates recovered in Italy from 1993 to 1996. J Clin Microbiol 36:2944–2949
    [Google Scholar]
  23. National Committee for Clinical Laboratory Standards 1993 Methods for Antimicrobial Testing of Anaerobic Bacteria , 2nd edn. Approved standard M11-A3 Villanova, PA: National Committee for Clinical Laboratory Standards;
    [Google Scholar]
  24. Perelle S., Gibert M., Bourlioux P., Corthier G., Popoff M. R. 1997; Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196. Infect Immun 65:1402–1407
    [Google Scholar]
  25. Pituch H., Van Belkum A., Van Den Braak N., Obuch-Woszczatynski P., Verbrugh H., Meisel-Mikolajczyk F., Luczak M. 2003; Recent emergence of an epidemic clindamycin-resistant clone of Clostridium difficile among Polish patients with C.difficile -associated diarrhea. J Clin Microbiol 41:4184–4187 [CrossRef]
    [Google Scholar]
  26. Roberts M. C. 1995; Distribution of tetracycline and macrolide-lincosamide-streptogramin B resistance genes in anaerobic bacteria. Clin Infect Dis 20:S367–S369 [CrossRef]
    [Google Scholar]
  27. Roberts M. C., McFarland L. V., Mullany P., Mulligan M. E. 1994; Characterization of the genetic basis of antibiotic resistance in Clostridium difficile . J Antimicrob Chemother 33:419–429 [CrossRef]
    [Google Scholar]
  28. Rupnik M. 2001; How to detect Clostridium difficile variant strains in a routine laboratory. Clin Microb Infect Dis 7:417–420 [CrossRef]
    [Google Scholar]
  29. Rupnik M., Braun V., Soehn F., Janc M., Hofstetter M., Laufenberg-Feldmann R., von Eichel-Streiber C. 1997; Characterization of polymorphisms in the toxin A and B genes of Clostridium difficile. FEMS Microbiol Lett 148:197–202 [CrossRef]
    [Google Scholar]
  30. Rupnik M., Avesani V., Janc M., von Eichel-Streiber C., Delmée M. 1998; A novel toxinotyping scheme and correlation of toxinotypes with serogroups of Clostridium difficile isolates. J Clin Microbiol 36:2240–2247
    [Google Scholar]
  31. Rupnik M., Brazier J. S., Duerden B. I., Grabnar M., Stubbs S. L. 2001; Comparison of toxinotyping and PCR ribotyping of Clostridium difficile strains and description of novel toxinotypes. Microbiology 147:439–447
    [Google Scholar]
  32. Rupnik M., Kato N., Grabnar M., Kato H. 2003; New types of toxin A-negative, toxin B-positive strains among Clostridium difficile isolates from Asia. J Clin Microbiol 41:1118–1125 [CrossRef]
    [Google Scholar]
  33. Sambol S. P., Merrigan M. M., Lyerly D., Gerding D. N., Johnson S. 2000; Toxin gene analysis of a variant strain of Clostridium difficile that causes human clinical disease. Infect Immun 68:5480–5487 [CrossRef]
    [Google Scholar]
  34. Soehn S., Wagenknecht-Wiesner A., Leukel P., Kohl M., Weidmann M., von Eichel-Streiber C., Braun V. 1998; Genetic rearrangements in the pathogenicity locus of Clostridium difficile strain 8864 – implications for transcription, expression and enzymatic activity of toxin A and B. Mol Gen Genet 258:222–232 [CrossRef]
    [Google Scholar]
  35. Spigaglia P., Mastrantonio P. 2002; Molecular analysis of the pathogenicity locus (PaLoc) and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol 40:3470–3475 [CrossRef]
    [Google Scholar]
  36. Spigaglia P., Mastrantonio P. 2003; Analysis of macrolide-lincosamide-streptogramin B (MLSB) resistance determinant in strains of Clostridium difficile . Microb Drug Resist 8:45–53
    [Google Scholar]
  37. Spigaglia P., Cardines R., Rossi S., Menozzi M. G., Mastrantonio P. 2001; Molecular typing and long-term comparison of Clostridium difficile strains by pulsed-field gel electrophoresis and PCR-ribotyping. J Med Microbiol 50:407–414
    [Google Scholar]
  38. Stubbs S., Rupnik M., Gibert M., Brazier J., Duerden B., Popoff M. 2000; Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile . FEMS Microbiol Lett 186:307–312 [CrossRef]
    [Google Scholar]
  39. Tan K. S., Boon Y. W., Keang P. S. 2001; Evidence for holin function of tcd E gene in the pathogenicity of Clostridium difficile . J Med Microbiol 50:613–619
    [Google Scholar]
  40. Wren B. W., Mullany P., Clayton C., Tabaqchali S. 1988; Molecular cloning and genetic analysis of a chloramphenicol acetyltransferase determinant from Clostridium difficile . Antimicrob Agents Chemother 32:1213–1217 [CrossRef]
    [Google Scholar]
  41. Wüst J., Hardegger U. 1983; Transferable resistance to clindamycin, erythromycin, and tetracycline in Clostridium difficile. Antimicrob Agents Chemother 23:784–786 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.45682-0
Loading
/content/journal/jmm/10.1099/jmm.0.45682-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error