1887

Abstract

Few data exist on the distribution of serotypes in many countries and in non-invasive disease overall. Here, data are presented from 772 paediatric isolates from children with community-acquired respiratory tract infections isolated from the PROTEKT global surveillance study during 1999–2000. Overall, 60.0 % of isolates were covered by the 7-valent pneumococcal vaccine formulation (PCV7), with greater coverage in the USA compared with Europe (69.6 vs 55.5 %, = 0.014). Geographically dispersed clones of serogroups 3, 11 and 15 accounted for most of the isolates outside PCV7 coverage. Overall, macrolide, penicillin and cotrimoxazole non-susceptibility rates were high; however, all isolates were susceptible to telithromycin. Although only 7.4 % of isolates were resistant to amoxycillin/clavulanate, a higher prevalence of resistance was found in isolates from the USA and South Korea. This study shows the feasibility and importance of serotyping antibiotic surveillance study isolates and the potential of telithromycin as an important option for empiric therapy.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.45647-0
2004-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/11/JM531110.html?itemId=/content/journal/jmm/10.1099/jmm.0.45647-0&mimeType=html&fmt=ahah

References

  1. Black S. B., Shinefield H. R., Ling S. & 8 other authors; 2002; Effectiveness of heptavalent pneumococcal conjugate vaccine in children younger than five years of age for prevention of pneumonia. Pediatr Infect Dis J 21:810–815 [CrossRef]
    [Google Scholar]
  2. Bozdogan B., Appelbaum P. C., Kelly L. M. & 13 other authors; 2003; Activity of telithromycin and seven other agents against 1034 pediatric Streptococcus pneumoniae isolates from ten central and eastern European centers. Clin Microbiol Infect 9:653–661 [CrossRef]
    [Google Scholar]
  3. Davies T. A., Dewasse B. E., Jacobs M. R., Appelbaum P. C. 2000; In vitro development of resistance to telithromycin (HMR 3647), four macrolides, clindamycin, and pristinamycin in Streptococcus pneumoniae . Antimicrob Agents Chemother 44:414–417 [CrossRef]
    [Google Scholar]
  4. Davis M. M., Andreae M., Freed G. L. 2001; Physicians’ early challenges related to the pneumococcal conjugate vaccine. Ambul Pediatr 1:302–305 [CrossRef]
    [Google Scholar]
  5. Davis M. M., Ndiaye S. M., Freed G. L., Kim C. S., Clark S. J. 2003; Influence of insurance status and vaccine cost on physicians’ administration of pneumococcal conjugate vaccine. Pediatrics 112:521–526 [CrossRef]
    [Google Scholar]
  6. Drusano G. 2001; Pharmacodynamic and pharmacokinetic considerations in antimicrobial selection: focus on telithromycin. Clin Microbiol Infect 7 (Suppl. 3):24–29 [CrossRef]
    [Google Scholar]
  7. Edlund C., Alvan G., Barkholt L., Vacheron F., Nord C. E. 2000; Pharmacokinetics and comparative effects of telithromycin (HMR 3647) and clarithromycin on the oropharyngeal and intestinal microflora. J Antimicrob Chemother 46:741–749 [CrossRef]
    [Google Scholar]
  8. Enright M. C., Spratt B. G. 1998; A multilocus sequence typing scheme for Streptococcus pneumoniae : identification of clones associated with serious invasive disease. Microbiology 144:3049–3060 [CrossRef]
    [Google Scholar]
  9. Farrell D. J., Morrissey I., Bakker S., Felmingham D. 2001; Detection of macrolide resistance mechanisms in Streptococcus pneumoniae and Streptococcus pyogenes using a multiplex rapid cycle PCR with microwell-format probe hybridization. J Antimicrob Chemother 48:541–544 [CrossRef]
    [Google Scholar]
  10. Farrell D. J., Morrissey I., Bakker S., Felmingham D. 2002; Molecular characterization of macrolide resistance mechanisms among Streptococcus pneumoniae and Streptococcus pyogenes isolated from the PROTEKT 1999-2000 study. J Antimicrob Chemother 50 (Suppl. S1):39–47
    [Google Scholar]
  11. Farrell D. J., Douthwaite S., Morrissey I., Bakker S., Poehlsgaard J., Jakobsen L., Felmingham D. 2003; Macrolide resistance by ribosomal mutation in clinical isolates of Streptococcus pneumoniae from the PROTEKT 1999-2000 study. Antimicrob Agents Chemother 47:1777–1783 [CrossRef]
    [Google Scholar]
  12. Farrell D. J., Morrissey I., Bakker S., Morris L., Buckridge S., Felmingham D. 2004; Molecular epidemiology of multiresistant Streptococcus pneumoniae with both erm (B)- and mef (A)-mediated macrolide resistance. J Clin Microbiol 42:764–768 [CrossRef]
    [Google Scholar]
  13. Felmingham D. 2002; The need for antimicrobial resistance surveillance. J Antimicrob Chemother 50:1–7
    [Google Scholar]
  14. Felmingham D., Gruneberg R. N. 2000; The Alexander Project 1996-1997: latest susceptibility data from this international study of bacterial pathogens from community-acquired lower respiratory tract infections. J Antimicrob Chemother 45:191–203 [CrossRef]
    [Google Scholar]
  15. Felmingham D., Washington J. 1999; Trends in the antimicrobial susceptibility of bacterial respiratory tract pathogens – findings of the Alexander Project 1992-1996. J Chemother 11 (Suppl. 1):5–21 [CrossRef]
    [Google Scholar]
  16. Felmingham D., Reinert R. R., Hirakata Y., Rodloff A. 2002; Increasing prevalence of antimicrobial resistance among isolates of Streptococcus pneumoniae from the PROTEKT surveillance study, and comparative in vitro activity of the ketolide, telithromycin. J Antimicrob Chemother 50 (Suppl. S1):25–37
    [Google Scholar]
  17. File T. M. Jr, Jacobs M. R., Poole M. D., Wynne B. 2002; Outcome of treatment of respiratory tract infections due to Streptococcus pneumoniae , including drug-resistant strains, with pharmacokinetically enhanced amoxycillin/clavulanate. Int J Antimicrob Agents 20:235–247 [CrossRef]
    [Google Scholar]
  18. Hammerschlag M. R., Roblin P. M., Bebear C. M. 2001; Activity of telithromycin, a new ketolide antibacterial, against atypical and intracellular respiratory tract pathogens. J Antimicrob Chemother 48 (Suppl. T1):25–31 [CrossRef]
    [Google Scholar]
  19. Hausdorff W. P., Bryant J., Paradiso P. R., Siber G. R. 2000a; Which pneumococcal serogroups cause the most invasive disease: implications for conjugate vaccine formulation and use, part I. Clin Infect Dis 30:100–121 [CrossRef]
    [Google Scholar]
  20. Hausdorff W. P., Bryant J., Kloek C., Paradiso P. R., Siber G. R. 2000b; The contribution of specific pneumococcal serogroups to different disease manifestations: implications for conjugate vaccine formulation and use, part II. Clin Infect Dis 30:122–140 [CrossRef]
    [Google Scholar]
  21. Hoban D. J., Doern G. V., Fluit A. C., Roussel-Delvallez M., Jones R. N. 2001; Worldwide prevalence of antimicrobial resistance in Streptococcus pneumoniae , Haemophilus influenzae , and Moraxella catarrhalis in the SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin Infect Dis 32 (Suppl. 2):S81–S93 [CrossRef]
    [Google Scholar]
  22. Jackson L. A., Neuzil K. M., Yu O. & 7 other authors; 2003; Effectiveness of pneumococcal polysaccharide vaccine in older adults. N Engl J Med 348:1747–1755 [CrossRef]
    [Google Scholar]
  23. Joloba M. L., Windau A., Bajaksouzian S., Appelbaum P. C., Hausdorff W. P., Jacobs M. R. 2001; Pneumococcal conjugate vaccine serotypes of Streptococcus pneumoniae isolates and the antimicrobial susceptibility of such isolates in children with otitis media. Clin Infect Dis 33:1489–1494 [CrossRef]
    [Google Scholar]
  24. Klugman K. P., Madhi S. A., Huebner R. E., Kohberger R., Mbelle N., Pierce N. the Vaccine Trialists Group 2003; A trial of a 9-valent pneumococcal conjugate vaccine in children with and those without HIV infection. N Engl J Med 349:1341–1348 [CrossRef]
    [Google Scholar]
  25. Lakshman R., Murdoch C., Race G., Burkinshaw R., Shaw L., Finn A. 2003; Pneumococcal nasopharyngeal carriage in children following heptavalent pneumococcal conjugate vaccination in infancy. Arch Dis Child 88:211–214 [CrossRef]
    [Google Scholar]
  26. Mbelle N., Huebner R. E., Wasas A. D., Kimura A., Chang I., Klugman K. P. 1999; Immunogenicity and impact on nasopharyngeal carriage of a nonavalent pneumococcal conjugate vaccine. J Infect Dis 180:1171–1176 [CrossRef]
    [Google Scholar]
  27. Morrissey I., Farrell D. J., Bakker S., Buckridge S., Felmingham D. 2003; Molecular characterization and antimicrobial susceptibility of fluoroquinolone-resistant or -susceptible Streptococcus pneumoniae from Hong Kong. Antimicrob Agents Chemother 47:1433–1435 [CrossRef]
    [Google Scholar]
  28. Nahm M. H., Olander J. V., Magyarlaki M. 1997; Identification of cross-reactive antibodies with low opsonophagocytic activity for Streptococcus pneumoniae . J Infect Dis 176:698–703 [CrossRef]
    [Google Scholar]
  29. National Committee for Clinical Laboratory Standards 2003 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically . Approved Standard, 6th edn. NCCLS document M7-A6 Wayne, PA: National Committee for Clinical Laboratory Standards;
    [Google Scholar]
  30. National Committee for Clinical Laboratory Standards 2004 Performance Standards Antimicrobial Susceptibility Testing . Twelfth Information Supplement. NCCLS document M100-S14 Wayne, PA: National Committee for Clinical Laboratory Standards;
    [Google Scholar]
  31. Obaro S. K., Adegbola R. A., Banya W. A., Greenwood B. M. 1996; Carriage of pneumococci after pneumococcal vaccination. Lancet 348:271–272
    [Google Scholar]
  32. Sahm D. F., Jones M. E., Hickey M. L., Diakun D. R., Mani S. V., Thornsberry C. 2000; Resistance surveillance of Streptococcus pneumoniae , Haemophilus influenzae and Moraxella catarrhalis isolated in Asia and Europe, 1997-1998. J Antimicrob Chemother 45:457–466 [CrossRef]
    [Google Scholar]
  33. Stratton C. W. 2003; Dead bugs don't mutate: susceptibility issues in the emergence of bacterial resistance. Emerg Infect Dis 9:10–16 [CrossRef]
    [Google Scholar]
  34. Vakevainen M., Eklund C., Eskola J., Kayhty H. 2001; Cross-reactivity of antibodies to type 6B and 6A polysaccharides of Streptococcus pneumoniae , evoked by pneumococcal conjugate vaccines, in infants. J Infect Dis 184:789–793 [CrossRef]
    [Google Scholar]
  35. Van Rensburg D. J., Matthews P. A., Leroy B. 2002; Efficacy and safety of telithromycin in community-acquired pneumonia. Curr Med Res Opin 18:397–400 [CrossRef]
    [Google Scholar]
  36. Von Kries R., Hermann M., Al-Lahham A., Siedler A., Reinert R. R. 2002; Will the 7-valent pneumococcal vaccine have a similar impact on all invasive pneumococcal infections in children in Germany as in the Kaiser Permanente Trial?. Eur J Pediatr 161 (Suppl. 2):S140–S143 [CrossRef]
    [Google Scholar]
  37. Whitney C. G., Farley M. M., Hadler J. & 10 other authors; 2003; Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. N Engl J Med 348:1737–1746 [CrossRef]
    [Google Scholar]
  38. World Health Organization 1990 Programme for the Control of Acute Respiratory Infections. Antibiotics in the Treatment of Acute Respiratory Infections in Young Children Geneva: WHO/ARI/90.10;
    [Google Scholar]
  39. Yu X., Gray B., Chang S., Ward J. I., Edwards K. M., Nahm M. H. 1999; Immunity to cross-reactive serotypes induced by pneumococcal conjugate vaccines in infants. J Infect Dis 180:1569–1576 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.45647-0
Loading
/content/journal/jmm/10.1099/jmm.0.45647-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error