1887

Abstract

Intervention in bacterial adhesion to host cells is a novel method of overcoming current problems associated with antibiotic resistance. Antibiotic-resistant strains of bacteria that cause respiratory tract infections are a problem in hospitals and could be used in bioterrorist attacks. A range of bacterial species was demonstrated to attach to an alveolar epithelial (A549) cell line. In all cases, cell surface oligosaccharides were important in attachment, demonstrated by reduced adhesion when A549 cells were pre-treated with tunicamycin. and displayed a restricted tropism for oligosaccharides compared to the environmental, opportunistic pathogens, , , and . The compound with the greatest anti-adhesion activity was -nitrophenol. Other generic attachment inhibitors included the polymeric saccharides (dextran and heparin), GalNAcβ1-4Gal, GalNAcβ1-3Gal, Galβ1-4GlcNAc and Galβ1-3GlcNAc. attachment was particularly susceptible to oligosaccharide inhibition. Combinations of such compounds may serve as a novel generic therapeutics for respiratory tract infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.45643-0
2004-09-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/9/JM530902.html?itemId=/content/journal/jmm/10.1099/jmm.0.45643-0&mimeType=html&fmt=ahah

References

  1. Ahmed, K., Suzuki, Y., Miyamoto, D. & Nagatake, T. ( 2002;). Asialo-GM1 and asialo-GM2 are putative adhesion molecules for Moraxella catarrhalis. Med Microbiol Immunol 191, 5–10.[CrossRef]
    [Google Scholar]
  2. Ariel, N., Zvi, A., Makarova, K. S., Chitlaru, T., Elhanany, E., Velan, B., Cohen, S., Friedlander, A. M. & Shafferman, A. ( 2003;). Genome-based bioinformatic selection of chromosomal Bacillus anthracis putative vaccine candidates coupled with proteomic identification of surface-associated antigens. Infect Immun 71, 4563–4579.[CrossRef]
    [Google Scholar]
  3. Atkins, T. P. & Oyston, P. C. F. ( 2003;). The molecular basis of pathogenicity of Burkholderia pseudomallei. In Recent Research Developments in Infection & Immunity, vol. 1, pp. 1–8. Kerala, India: Transworld Research Network.
  4. Bargouthi, S., Guerdoud, L. M. & Speert, D. P. ( 1996;). Inhibition by dextran of Pseudomonas aeruginosa adherence to epithelial cells. Am J Respir Crit Care Med 154, 1788–1793.[CrossRef]
    [Google Scholar]
  5. Boyd, A. P., Sory, M.-P., Iriarte, M. & Cornelis, G. R. ( 1998;). Heparin interferes with translocation of Yop proteins into HeLa cells and binds to LcrG, a regulatory component of the Yersinia Yop apparatus. Mol Microbiol 27, 425–436.[CrossRef]
    [Google Scholar]
  6. Brennan, M. J., Hannah, J. H. & Leininger, E. ( 1991;). Adhesion of Bordetella pertussis to sulfatides and to the GalNAcβ1-4Gal sequence found in glycosphingolipids. J Biol Chem 266, 18827–18831.
    [Google Scholar]
  7. Bryan, R., Feldman, M., Jawetz, S. C., Rajan, S., DiMango, E., Tang, H. B., Scheffler, L., Speert, D. P. & Prince, A. ( 1999;). The effects of aerosolized dextran in a mouse model of Pseudomonas aeruginosa pulmonary infection. J Infect Dis 179, 1449–1458.[CrossRef]
    [Google Scholar]
  8. Chiu, C. H., Wong, S., Hancock, R. E. & Speert, D. P. ( 2001;). Adherence of Burkholderia cepacia to respiratory tract epithelial cells and inhibition with dextrans. Microbiology 147, 2651–2658.
    [Google Scholar]
  9. Cieslak, T. J. & Eitzen, E. M. Jr ( 2000;). Bioterrorism: agents of concern. J Public Health Manag Pract 6, 19–29.
    [Google Scholar]
  10. Cundell, D. R. & Tuomanen, E. I. ( 1994;). Receptor specificity of adherence of Streptococcus pneumoniae to human type-II pneumocytes and vascular endothelial cells in vitro. Microb Pathog 17, 361–374.[CrossRef]
    [Google Scholar]
  11. Duran, J. A., Malvar, A., Rodriguez-Ares, M. T. & Garcia-Riestra, C. ( 1993;). Heparin inhibits Pseudomonas adherence to soft contact lens. Eye 7, 152–154.[CrossRef]
    [Google Scholar]
  12. Edén, C. S., Freter, R., Hagberg, L., Hull, R., Hull, S., Leffler, H. & Schoolnik, G. ( 1982;). Inhibition of experimental ascending urinary tract infection by an epithelial cell-surface receptor analogue. Nature 298, 560–563.[CrossRef]
    [Google Scholar]
  13. Ezzell, J. W. & Welkos, S. L. ( 1999;). The capsule of Bacillus anthracis, a review. J Appl Microbiol 87, 250. 250.[CrossRef]
    [Google Scholar]
  14. Falkowski, W., Edwards, M. & Schaeffer, A. J. ( 1986;). Inhibitory effect of substituted aromatic hydrocarbons on adherence of Escherichia coli to human epithelial cells. Infect Immun 52, 863–866.
    [Google Scholar]
  15. Fouet, A., Mesnage, S., Tosi-Couture, E., Gounon, P. & Mock, M. ( 1999;). Bacillus anthracis surface: capsule and S-layer. J Appl Microbiol 87, 251–255.[CrossRef]
    [Google Scholar]
  16. Fox, A., Stewart, G. C., Waller, L. N., Fox, K. F., Harley, W. M. & Price, R. L. ( 2003;). Carbohydrates and glycoproteins of Bacillus anthracis and related bacilli: targets for biodetection. J Microbiol Methods 54, 143–152.[CrossRef]
    [Google Scholar]
  17. Gori, A. H., Ahmed, K., Martinez, G., Masaki, H., Watanabe, K. & Nagatake, T. ( 1999;). Mediation of attachment of Burkholderia pseudomallei to human pharyngeal epithelial cells by the asialoganglioside GM1-GM2 receptor complex. Am J Trop Med Hyg 61, 473–475.
    [Google Scholar]
  18. Hosoya, M., Balzarini, J., Shigeta, S. & De Clercq, E. ( 1991;). Differential inhibitory effects of sulfated polysaccharides and polymers on the replication of various myxoviruses and retroviruses, depending on the composition of the target amino acid sequences of the viral envelope glycoproteins. Antimicrob Agents Chemother 35, 2515-2520.[CrossRef]
    [Google Scholar]
  19. Idänpään-Heikkilä, I., Simon, P. M., Zopf, D., Vullo, T., Cahill, P., Sokol, K. & Tuomanen, E. ( 1997;). Oligosaccharides interfere with the establishment and progression of experimental pneumococcal pneumonia. J Infect Dis 176, 704–712.[CrossRef]
    [Google Scholar]
  20. Inglis, T. J. J., Robertson, T., Woods, D. E., Dutton, N. & Chang, B. J. ( 2003;). Flagellum-mediated adhesion by Burkholderia pseudomallei precedes invasion of Acanthamoeba astronyxis. Infect Immun 71, 2280–2282.[CrossRef]
    [Google Scholar]
  21. Kanai, K., Suzuki, Y., Kondo, E., Maejima, Y., Miyamoto, D., Suzuki, T. & Kurata, T. ( 1997;). Specific binding of Burkholderia pseudomallei cells and their cell-surface acid phosphatase to gangliotetraosylceramide (asialo GM1) and gangliotriaosylceramide (asialo GM2). Southeast Asian J Trop Med Public Health 28, 781–790.
    [Google Scholar]
  22. Karlsson, K.-A., Ångström, J., Bergström, J. & Lanne, B. ( 1992;). Microbial interaction with animal cell surface carbohydrates. APMIS Suppl 27, 71–83.
    [Google Scholar]
  23. Kienle, Z., Emody, L., Svanborg, C. & O'Toole, P. W. ( 1992;). Adhesive properties conferred by the plasminogen activator to Yersinia pestis. J Gen Microbiol 138, 1679–1687.[CrossRef]
    [Google Scholar]
  24. Krivan, H. C., Roberts, D. D. & Ginsburg, V. ( 1988a;). Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAcβ1-4Gal found in some glycolipids. Proc Natl Acad Sci U S A 85, 6157–6161.[CrossRef]
    [Google Scholar]
  25. Krivan, H. C., Ginsburg, V. & Roberts, D. D. ( 1988b;). Pseudomonas aeruginosa and Pseudomonas cepacia isolated from cystic fibrosis patients bind specifically to gangliotetraosylceramide (asialo GM1) and gangliotriaosylceramide (asialo GM2). Arch Biochem Biophys 260, 493–496.[CrossRef]
    [Google Scholar]
  26. Krivan, H. C., Olson, L. D., Barile, M. F., Ginsburg, V. & Roberts, D. D. ( 1989;). Adhesion of Mycoplasma pneumoniae to sulfated glycolipids and inhibition by dextran sulfate. J Biol Chem 264, 9283–9288.
    [Google Scholar]
  27. Krivan, H. C., Nilsson, B., Lingwood, C. A. & Ryu, H. ( 1991;). Chlamydia trachomatis and Chlamydia pneumoniae bind specifically to phosphatidylethanolamine in HeLa cells and to GalNAcβ1-4Galβ1-4Glc sequences found in asialo-GM1 and asialo-GM2. Biochem Biophys Res Comm 175, 1082–1089.[CrossRef]
    [Google Scholar]
  28. Kuehn, M., Lent, K., Haas, J., Hagenzieker, J., Cervin, M. & Smith, A. L. ( 1992;). Fimbriation of Pseudomonas cepacia. Infect Immun 60, 2002–2007.
    [Google Scholar]
  29. Kwaik, Y. A. ( 2000;). Invasion of mammalian and protozoan cells by Legionella pneumophila. Subcell Biochem 33, 383–409.
    [Google Scholar]
  30. Lähteenmäki, K., Virkola, R., Sarén, A., Emödy, L. & Korhonen, T. K. ( 1998;). Expression of plasminogen activator Pla of Yersinia pestis enhances bacterial attachment to the mammalian extracellular matrix. Infect Immun 66, 5755–5762.
    [Google Scholar]
  31. Ledson, M., Gallagher, M., Hart, C. A. & Walshaw, M. ( 2001;). Nebulized heparin in Burkholderia cepacia colonized adult cystic fibrosis patients. Eur Respir J 17, 36–38.[CrossRef]
    [Google Scholar]
  32. Leggiadro, R. J. ( 2000;). The threat of biological terrorism: a public health and infection control reality. Infect Control Hosp Epidemiol 21, 53–56.[CrossRef]
    [Google Scholar]
  33. Lindler, L. E. & Tall, B. D. ( 1993;). Yersinia pestis pH 6 antigen forms fimbriae and is induced by intracellular association with macrophages. Mol Microbiol 8, 311–324.[CrossRef]
    [Google Scholar]
  34. Lister, P. D. ( 2000;). Emerging resistance problems among respiratory tract pathogens. Am J Manag Care 6 (Suppl 8), S409–S418.
    [Google Scholar]
  35. Loomes, L. M., Uemura, K., Childs, R. A. & 7 other authors ( 1984;). Erythrocyte receptors for Mycoplasma pneumoniae are sialylated oligosaccharides of Ii antigen types. Nature 307, 560–563.[CrossRef]
    [Google Scholar]
  36. Lynch, J. P. III ( 2001;). Hospital-acquired pneumonia: risk factors, microbiology, and their treatment. Chest 119 (Suppl 2), 373S–384S.[CrossRef]
    [Google Scholar]
  37. Mock, M. & Fouet, A. ( 2001;). Anthrax. Annu Rev Microbiol 55, 647–671.[CrossRef]
    [Google Scholar]
  38. Neyts, J., Reyman, D., Letourneur, D. & 9 other authors ( 1995;). Differential antiviral activity of derivatized dextrans. Biochem Pharmacol 50, 743–751.[CrossRef]
    [Google Scholar]
  39. Ofek, I. & Sharon, N. ( 1990;). Adhesins as lectins: specificity and role in infection. Curr Top Microbiol Immunol 151, 91–113.
    [Google Scholar]
  40. Payne, D., Tatham, D., Williamson, E. D. & Titball, R. W. ( 1998;). The pH 6 antigen of Yersinia pestis binds to β1-linked galactosyl residues in glycosphingolipids. Infect Immun 66, 4545–4548.
    [Google Scholar]
  41. Plotkowski, M. C., Costa, A. O., Morandi, V., Barbosa, H. S., Nader, H. B., de Bentzmann, S. & Puchelle, E. ( 2001;). Role of heparan sulphate proteoglycans as potential receptors for non-piliated Pseudomonas aeruginosa adherence to non-polarised airway epithelial cells. J Med Microbiol 50, 183–190.
    [Google Scholar]
  42. Ramphal, R., Carnoy, C., Fievre, S., Michalski, J.-C., Houdret, N., Lamblin, G., Strecker, G. & Roussel, P. ( 1991;). Pseudomonas aeruginosa recognizes carbohydrate chains containing type 1 (Galβ1-3GlcNAc) or type 2 (Galβ1-4GlcNAc) disaccharide units. Infect Immun 59, 700–704.
    [Google Scholar]
  43. Rojas, C. M., Ham, J. H., Deng, W. L., Doyle, J. J. & Collmer, A. ( 2002;). HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings. Proc Natl Acad Sci U S A 99, 13142–13147.[CrossRef]
    [Google Scholar]
  44. Sajjan, U. S., Sylvester, F. A. & Forstner, J. F. ( 2000;). Cable-piliated Burkholderia cepacia binds to cytokeratin 13 of epithelial cells. Infect Immun 68, 1787–1795.[CrossRef]
    [Google Scholar]
  45. Schweizer, F., Jiao, H., Hindsgaul, O., Wong, W. Y. & Irvin, R. T. ( 1997;). Interaction between the pili of Pseudomonas aeruginosa PAK and its carbohydrate receptor β-D-GalNAc(1→4)β-D-Gal analogs. Can J Microbiol 44, 307–311.
    [Google Scholar]
  46. Simon, P. M., Goode, P. L., Mobasseri, A. & Zopf, D. ( 1997;). Inhibition of Helicobacter pylori binding to gastrointestinal epithelial cells by sialic acid-containing oligosaccharides. Infect Immun 65, 750–757.
    [Google Scholar]
  47. Spencer, R. C. ( 1995;). The emergence of epidemic, multiple antibiotic resistant Stenotrophomonas (Xanthomonas) maltophila and Burkholderia (Pseudomonas) cepacia. J Hosp Infect 30, S453–S464.[CrossRef]
    [Google Scholar]
  48. Straley, S. C. ( 1993;). Adhesins in Yersinia pestis. Trends Microbiol 1, 285–286.[CrossRef]
    [Google Scholar]
  49. Sundberg-Kovamees, M., Holme, T. & Sjogren, A. ( 1994;). Specific binding of Streptococcus pneumoniae to two receptor saccharide structures. Microb Pathog 17, 63–68.[CrossRef]
    [Google Scholar]
  50. Suzuki, Y., Nakao, T., Ito, T. & 14 other authors ( 1992;). Structural determination of gangliosides that bind to influenza A, B, and C viruses by an improved binding assay: strain-specific receptor epitopes in sialo-sugar chains. Virology 189, 121–131.[CrossRef]
    [Google Scholar]
  51. Suzuki, T., Portner, A., Scroggs, R. A., Uchikawa, M., Koyama, N., Matsuo, K., Suzuki, Y. & Takimoto, T. ( 2001;). Receptor specificities of human respiroviruses. J Virol 75, 4604–4613.[CrossRef]
    [Google Scholar]
  52. Sylvester, F. A., Sajjan, U. S. & Forstner, J. F. ( 1996;). Burkholderia (basonym Pseudomonas) cepacia binding to lipid receptors. Infect Immun 64, 1420–1425.
    [Google Scholar]
  53. Sylvestre, P., Couture-Tosi, E. & Mock, M. ( 2002;). A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol Microbiol 45, 169–178.[CrossRef]
    [Google Scholar]
  54. Tan, T. Q. ( 2003;). Antibiotic resistant infections due to Streptococcus pneumoniae: impact on therapeutic options and clinical outcome. Curr Opin Infect Dis 16, 271–277.[CrossRef]
    [Google Scholar]
  55. Thomas, R. J. & Brooks, T. J. ( 2004;). Oligosaccharide receptor mimics inhibit Legionella pneumophila attachment to human respiratory epithelial cells. Microb Pathog 36, 83–92.[CrossRef]
    [Google Scholar]
  56. Tomich, M. & Mohr, C. D. ( 2003;). Adherence and autoaggregation phenotype of a Burkholderia cenocepacia cable pilus mutant. FEMS Microbiol Lett 228, 287–297.[CrossRef]
    [Google Scholar]
  57. Tong, H. H., McIver, M. A., Fisher, L. M. & DeMaria, T. F. ( 1999;). Effect of lacto-N-neotetraose, asialoganglioside-GM1 and neuraminidase on adherence of otitis media-associated serotypes of Streptococcus pneumoniae to chinchilla tracheal epithelium. Microb Pathog 26, 111–119.[CrossRef]
    [Google Scholar]
  58. Tsang, K. W., Shum, D. K., Chan, S. & 7 other authors ( 2003;). Pseudomonas aeruginosa adherence to human basement membrane collagen in vitro. Eur Respir J 21, 932–938.[CrossRef]
    [Google Scholar]
  59. van Alphen, L., Geelen-van den Broek, L., Blaas, L., van Ham, M. & Dankert, J. ( 1991;). Blocking of fimbria-mediated adherence of Haemophilus influenzae by sialyl gangliosides. Infect Immun 59, 4473–4477.
    [Google Scholar]
  60. Zopf, D. & Roth, S. ( 1996;). Oligosaccharide anti-infective agents. Lancet 347, 1017–1021.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.45643-0
Loading
/content/journal/jmm/10.1099/jmm.0.45643-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error